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Abstract. We present a detailed description of several experiments which have been previously reported
in several letters: the determination of the 1S Lamb shift in hydrogen by a comparison of the frequencies
of the 1S–3S and 2S–6S or 2S–6D two-photon transitions, and the measurement of the 2S–8S/D and
2S–12D optical frequencies. Following a complete study of the lineshape of the two-photon transitions,
we provide the updated values of these frequencies which have been used in the 1998 adjustment of
the fundamental constants. From an analysis taking into account these results and several other precise
measurements by other authors, we show that the optical frequency measurements have superseded the
microwave determination of the 2S Lamb shift and we deduce optimized values for the Rydberg constant,
R∞ = 109 737.315 685 50(84) cm−1 (relative uncertainty of 7.7× 10−12) and for the 1S and 2S Lamb shifts
L(1S) = 8 172.840(22) MHz and L(2S–2P) = 1 057.8450(29) MHz (respectively, 8 183.970(22) MHz and
1 059.2341(29) MHz for deuterium). These are now the most accurate values available.

PACS. 06.20.Jr Determination of fundamental constants – 21.10.Ft Charge distribution –
31.30.Jv Relativistic and quantum electrodynamic effects in atoms and molecules

1 Introduction

Over the past two decades the absolute measurement of
wavelengths or frequencies of hydrogen has been continu-
ously improved with the aim of determining the Rydberg
constant and testing quantum electrodynamics calcula-
tions. With the interferometric measurements, the rela-
tive accuracy was in the range of one part in 1010. A re-
view of these results is provided in reference [1]. Recently,
the interferometric measurements have been superseded
by accurate optical frequency ones. The latter make use of
frequency-multiplication chains which link the measured
frequency, via intermediate standard lasers, to the caesium
clock. With this method, Hänsch and collaborators have
measured the optical frequency of the 1S–2S two-photon
transition with an accuracy better than 3.4× 10−13 [2,3].
In our group, we have studied the 2S–nS and 2S–nD two-
photon transitions. In 1993, we measured the optical fre-
quencies of the 2S1/2–8S1/2, 2S1/2–8D3/2 and 2S1/2–8D5/2

transitions in hydrogen with a frequency chain using two
standard lasers (the iodine stabilized and the methane sta-
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bilized helium-neon lasers) and obtained a precision in the
range of 10−11 [4,5]. In 1996, we remade these measure-
ments in hydrogen and deuterium with an accuracy better
than one part in 1011 [6]. We used a new frequency chain
with a new standard laser, namely a diode laser at 778 nm
stabilized on the 5S–5D two-photon transition of rubidium
(LD/Rb laser). The frequency of this standard was mea-
sured with a frequency chain at the Laboratoire Primaire
du Temps et des Fréquences (LPTF) [7]. More recently, in
order to check these 2S–8S/D frequency measurements,
we have built a new chain to measure the frequencies of
the 2S–12D transitions in hydrogen and deuterium [8]. In
parallel, we have taken advantage of our experimental set-
up on the 2S–nS/D transitions to deduce the Lamb shift
of the 1S level via a comparison of the frequencies of the
1S–3S and 2S–6S/D transitions [9].

The aim of this paper is to relate in detail these exper-
iments. Section 2 describes our apparatus for the obser-
vation of the 2S–nS and 2S–nD transitions, which is the
corner stone of our hydrogen experiments. The Doppler
free two-photon transitions, in the range 750–820 nm, are
induced by a highly stable titanium-sapphire laser. To re-
duce the transit time broadening, we use an atomic beam
colinear with the laser beam. Section 3 is devoted to the
line shape analysis of the 2S–nS/D transitions. We follow
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Fig. 1. Experimental geometry of laser and atom beams to
observe the 2S–nS and 2S–nD two-photon transitions. When
the laser frequency is scanned over the resonance, we observe
a decrease of the metastable yield (see the inset).

the same procedure as in our previous work [10–12]. We
calculate the two-photon transition probability for a single
atom and average over all the possible trajectories. In our
recent calculations, we have taken into account the small
hyperfine structure of the D levels, photoionisation effects,
the small deviation of the atomic trajectories due to the
light forces, as well as the second-order Doppler effect. We
present the data analysis procedure and calculate the cor-
rections due to stray electric fields. The optical frequency
measurements are presented in Section 4. We describe the
rubidium optical frequency standard and the various fre-
quency chains used to measure the 2S–8S/D and 2S–12D
transitions. Finally, we give the up-to-date results, which
take into account the best line shape analysis and the most
recent measurements of the optical frequency standards.
The comparison of the 1S–3S and 2S–6S/D frequencies
is described in Section 5. Finally, in Section 6, we anal-
yse all these results to deduce the Rydberg constant and
the Lamb shifts of the 1S and 2S levels. We show that
the optical frequency measurements have superseded the
radiofrequency measurements of the 2S Lamb shift and,
using a least squares procedure which takes into account
all the precise measurements in hydrogen and deuterium,
we deduce a value of the Rydberg constant with a relative
uncertainty of 7.7× 10−12.

2 Spectroscopy of the 2S–nS and 2S–nD
transitions

2.1 Method

The principle of the experiment has been described pre-
viously [10]. The experimental geometry is illustrated in
Figure 1. A metastable atomic beam is formed by elec-
tronic excitation of a 1S hydrogen atomic beam. Due to
the inelastic collision with the electron, the atomic trajec-
tory is deviated by an angle of about 20◦. We use this de-
viation to make colinear, after the collision, the 2S atomic
beam with the laser beams. At the end of the atomic beam
we monitor the metastable yield: an electric field quenches
the metastable state and we detect the Lyman-α fluores-
cence. When the laser frequency is in resonance with the

Fig. 2. Experimental setup for the frequency stabilisation of
the titanium-sapphire laser. The explanations are given in the
text (TiSa1: titanium-sapphire laser, HeNe/I2: iodine stabi-
lized helium-neon laser, He–Ne: auxiliary helium-neon laser,
AOM1 and AOM2: acousto-optic modulators, EOM: electro-
optic modulator, FP, FPR and FPE: Fabry-Perot cavities).

2S–nS/D transition, the atoms in the nS or nD states
undergo a radiative cascade towards the 1S state in a pro-
portion of about 95%. It occurs an optical quenching of
the metastable level before the detection region and the
optical excitation can be detected via the corresponding
decrease of the 2S beam intensity (see Fig. 1).

2.2 Laser source

To induce the optical excitation, we use a home-made
titanium-sapphire laser which has been described previ-
ously [13]. With a pump power of 13 W (from a Spectra-
Physics 2030 argon ion laser), the single frequency output
power is about 2 W at 800 nm. For some experiments [4,5,
8], we use a second titanium-sapphire laser with the same
pump laser and the available power is reduced to about
1 W. For the high-resolution hydrogen spectroscopy, we
require a narrow laser bandwidth and a good long term
frequency stability. The frequency stabilisation set-up is
shown in Figure 2. The short term and long term sta-
bility are assured with two Fabry-Perot cavities, labelled
FP and FPR respectively. The principle of this stabili-
sation arrangement is to lock the titanium-sapphire laser
on the FP cavity, the FP cavity to the FPR cavity and,
finally, the FPR cavity to an iodine stabilized helium-
neon laser. A secondary laser beam from the titanium-
sapphire laser is splitted after a double pass through an
acousto-optic modulator (model 3200 from Crystal Tech-
nology at 200 MHz, labelled AOM1 in Fig. 2) and sent
on the FP and FPR cavities. The FP cavity (free spectral
range 600 MHz and finesse of about 400) is placed in a
robust vacuum box (wall thickness of 2 cm) and carefully
isolated from the external vibrations[13]. To reduce the
frequency jitter, the laser is locked, in a first step, on the
FP cavity. We use an FM sideband method [14]: the laser
beam sent in the FP cavity is phase modulated at about
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15 MHz with an electro-optic modulator (Gsänger PM25,
labelled EOM in Fig. 2). From the modulation detected
on the beam reflected by the FP cavity, we extract an
error signal which controls the piezoelectric and electro-
optic transducers monitoring the length of the laser cavity.
Thanks to this servo-loop, the frequency jitter is reduced
from 500 kHz (free running laser) to about 2 kHz [13].

The long term stability is guaranteed by the reference
Fabry-Perot cavity FPR. This cavity is very stable. It con-
sists of a 50 cm long zerodur spacer and two silver coated
mirrors, one flat and one spherical (60 cm curvature ra-
dius). Its finesse is about 75 at 633 nm and 120 at 800 nm.
A piezoelectric transducer (PZT) moves the flat mirror
thanks to a mechanical construction (made in fused silica)
which avoid the rotation of the mirror (the principle is to
deform a parallelogram) [15]. This cavity is also placed in
a vacuum box with the same design that for the FP cavity.
To obtain the long term stability, the FPR cavity is irra-
diated simultaneously by an iodine stabilized helium-neon
laser and a part of the titanium-sapphire laser (after the
double pass in the acousto-optic modulator). A first servo-
loop locks the FPR length to the helium-neon wavelength
(we use the 10 kHz frequency modulation of the helium-
neon laser). As the zerodur spacer is very stable, we have
always used, since ten years, the same fringes of the FPR
cavity (1 580 868 or 1 580 869 following the PZT voltage).
The length of the FPR cavity is also modulated (frequency
of about 4.2 kHz). This modulation is detected on the
transmission of the titanium-sapphire laser and a second
servo-loop locks the length of the FP cavity to the FPR
cavity. To scan the laser frequency, we sweep the frequency
of the radiofrequency wave which drives the acousto-optic
modulator. With this arrangement, the lengths of the two
FP and FPR cavities are fixed and the commutation time
of the laser frequency is only limited by the bandwidth
of the first servo-loop on the FP cavity (about 50 kHz).
An other advantage of this system with two cavities is
that the accuracy is given by the servo-loop on the FPR
cavity. This accuracy is better than the accuracy of the
first servo-loop on the FP cavity for two reasons: (i) the
modulation of the FPR cavity is small (about 10% of
the cavity bandwidth) and the error signal is less pertur-
bated by the transverse modes of the FPR cavity which
appear when the laser beam is not perfectly mode matched
on the cavity, (ii) the transmission signal of the cavity is
an Airy function which has approximatively a symmet-
ric Lorentzian profile. It is not the case for the servo-loop
on the FP cavity which is made with the reflected beam
by the cavity. In this case, the profile of the resonance of
the cavity can be dissymetric because of the losses of the
mirrors (it is the sum of an absorption and a dispersion
shapes due to the phase shift between the first reflection
on the input mirror and the beam which comes out of the
cavity) [15].

Thanks to our optical frequency measurements (see
Sect. 4), we have tested the metrological features of this
laser system. For instance, we have very often measured
the optical frequency of the fringe 1 286 174 of the FPR
cavity which is close to the 2S–8S/D two-photon transition

Fig. 3. Absolute frequency of the fringe 1 286 174 of the FPR
cavity when the fringe 1 580 868 is locked to the d line of the
iodine stabilized He–Ne laser. The values are in kHz and we
have subtracted 385 325 GHz. (a) Measurements made in 1993:
each point is the value obtained during a 20 minutes record-
ing of the 2S–8S/D transitions in hydrogen. The measure-
ments were made during about two weeks. The mean value
is 385 325 000 747.7(2.5) kHz. (b) Drift of the fringe frequency
on the period 1993–1998.

in hydrogen. The results are reported in Figures 3a and 3b.
Figure 3a shows a series of measurements made in 1993 [5].
Each point is the mean of a 20 minutes recording (see
Sect. 2.3). The standard deviation of these data is about
2.5 kHz, i.e. a day-to-day stability of 7×10−12. Figure 3b
shows the results since several years. During five years, we
have observed a frequency drift of about 100 kHz which is
perhaps due to an aging of the silver coating.

We use also several other interferometers to control
the wavelength of the laser: a lambdameter (typical ac-
curacy 10−3 nm), a 3 cm Fabry-Perot cavity (placed in
a vacuum box and scanned by pressure variation) and an
other, 50 cm long, Fabry-Perot cavity (labelled FPE in
Fig. 2). This cavity has the same design that the FPR
cavity, except that there is no PZT. To know the length
of the FPE cavity, an auxiliary He–Ne laser is locked on a
fringe of this cavity and we measure the beat frequency be-
tween the two He–Ne lasers. Simultaneously, a secondary
beam of the titanium-sapphire laser is sent on the FPE
cavity after a double pass in an acousto-optic modulator
(labelled AOM2 in Fig. 2). The frequency of this AOM
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Fig. 4. The metastable hydrogen atomic beam. The three vacuum chambers are not sketched with the same scale: following
the laser beams axis, the sizes of the electronic excitation chamber, interaction chamber and detection chamber are respectively
10 cm, 56 cm and 7 cm. M1 and M2: mirrors of the enhancement cavity, PM: photomultiplier.

is locked in order that the transmitted beam is in reso-
nance with the FPE cavity. By this way, we can know the
frequencies of the fringes of the FPE cavity with respect
to the ones of the FPR cavity. As the free spectral range
of the two cavities are slightly different (299.590 MHz and
299.700 MHz for the FPR and FPE cavity respectively),
there is a Vernier effect between the two cavities: the rela-
tive positions of the fringes of the two cavities are similar
every about 2700 fringes (i.e. 1.6 nm in terms of wave-
length) and, from these measurements, we can deduce the
numbers of the fringes of the FPR and FPE cavities with
a typical uncertainty of one fringe.

2.3 The metastable hydrogen atomic beam

2.3.1 The atomic beam apparatus

Our metastable atomic beam is sketched in Figure 4. It is
very similar to a first apparatus described in reference [16].
The metastable atomic beam is produced in two steps:
molecular hydrogen is dissociated in a water cooled Pyrex
tube by a radiofrequency discharge (about 26 MHz). An
atomic beam flows through a Teflon nozzle and effuses
into a first vacuum chamber, which is evacuated by an oil
diffusion pump (Alcatel 6250, pumping speed of 2 500 l/s)
to a pressure of about 10−4 mbar. Thereafter ground state
atoms are excited to the 2S metastable state by elec-
tronic bombardment (in an equipotential region to pre-
vent the quenching of the metastable atoms, see details in
Ref. [16]). The optical excitation takes place in the sec-
ond vacuum chamber, where the metastable atomic beam

is delimited by two holes, 7 mm in diameter, 56 cm apart
(this metastable atomic beam makes an angle of 20◦ with
the 1S atomic beam). To evacuate this chamber, we use a
cryogenic pump (CTI-Cryogenics CT8, pumping speed of
2 000 l/s for hydrogen) and the running pressure is typi-
cally 10−6 mbar. In our first experiments [4,5,9], the ambi-
ent magnetic field was reduced to less than 20 mG by three
pairs of coils. More recently [6,8], we have placed a mag-
netic shield in the second vacuum chamber (see Fig. 4).
To reduce the stray electric fields, the walls of the cham-
ber and the magnetic shield are painted with Aquadag,
a conductive colloidal graphite suspension in an ammo-
nia solution. This chamber is also permanently heated to
330 K to prevent the formation of any insulating deposits
on the walls and the magnetic shield. From the line shape
analysis of the 2S–nD transitions (n in the range 15–20),
which are very sensitive to the stray electric fields, we
have deduced that this painting reduces the stray elec-
tric fields from several tens of millivolts per centimetre to
about 3 mV/cm (see Sect. 3). To preserve this property,
the Aquadag paint is renewed approximatively about once
a year. The metastable atoms are detected in the third
vacuum chamber, which is simply evacuated through the
7 mm hole between the two vacuum chambers. An applied
electric field quenches the 2S state and two photomulti-
pliers (Hamamatsu R1459) detect the Lyman-α fluores-
cence. The two photomultiplier windows are 1 cm apart
around the quenching region, and the detection solid an-
gle is: Ω/4π ' 60%. To detect the photomultiplier sig-
nal, the quenching voltage is square-wave modulated at
about 1.45 kHz and we use a lock-in amplifier (ATNE
ADS2). From the photomultiplier current, we estimate the
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metastable beam intensity to be at best 2 × 107 atoms/s
(4 × 107 for deuterium). Nevertheless, we work usually
with a metastable yield of about 8× 106 atoms/s, regime
where the signal-to-noise ratio is better.

To maximise the excitation rate for the 2S–nS/D two-
photon transitions, the whole metastable atomic beam is
placed inside an enhancement cavity whose optical axis is
in coincidence with the atomic beam. This cavity is formed
by two mirrors, 101 cm apart, one flat (high reflector) and
the other concave (4 m curvature radius, transmission of
about 1.1%). With this geometry, the beam waist is about
660 µm. To reduce the perturbations due to the vibrations
of the cryogenic pump, this cavity is mounted on a small
granite bench (220×20×13 cm3) which is carefully isolated
from the vacuum apparatus. The two mirrors are mounted
on piezoelectric transducers and the length of the cavity is
locked to the laser wavelength by monitoring the reflected
beam polarisation [17]. In this servo-loop, the rapid length
fluctuations are corrected by a small PZT acting on the
flat mirror, which is of a small size (8 mm in diameter,
4 mm thick). Inside the cavity, the optical power can be
as much as 100 W in each direction. This light intensity
is controlled with a photodiode which measures the small
intensity transmitted by the high reflector.

2.3.2 Velocity distribution of the metastable atoms

A precise knowledge of the velocity distribution of the
atoms is necessary to calculate the line shapes of the two-
photon lines and to deduce the corrections due to the sec-
ond order Doppler effect. We have measured this velocity
distribution by observing the Doppler broadened 2S–6P
transition at 410 nm with a collinear laser beam. This
laser source is obtained from the titanium-sapphire laser
by a frequency doubling in an LBO crystal (see Ref. [13]
and Sect. 5). For this measurement, we remove the concave
mirror of the enhancement cavity. The beam at 410 nm
(typical power of 100 mW) is sent along the metastable
beam and a fraction of the laser beam (about 30%) is re-
flected by the flat mirror of the enhancement cavity, so
that the atoms see two counterpropagating waves. Usu-
ally, the measurements are made with two different beam
waists, one matched to the diameter of the metastable
beam (7 mm), the other more focused (about 2 mm) and
we have observed that the results are not sensitive to the
beam waist. For the detection, the quenching voltage in
the third vacuum chamber is applied continuously and the
laser beam is chopped at about 120 Hz. At this frequency,
the duration of the square-modulation of the light (4 ms)
is long with respect to the atomic transit time through the
second vacuum chamber (190 µs for an atom at 3 km/s), so
that only the very slow atoms (velocity of about 70 m/s)
are not detected with this method. The laser frequency
is scanned by locking the titanium-sapphire on the suc-
cessive fringes of the FPR cavity. A typical recording is
shown in Figure 5. The signal is split into two peaks, sep-
arated by 19 GHz, which are due to the two counterprop-
agating waves at 410 nm. In a first rough analysis, this
separation ∆ν corresponds to a beam velocity c∆ν/2ν0 of

Fig. 5. Doppler broadened profile of the 2S–6P transition
at 410 nm (the frequency is two times the frequency of the
titanium-sapphire laser at 820 nm).

3.9 km/s (c is the velocity of light and ν0 the frequency of
the 2S–6P transition). The maximum signal is about 10%
of the total metastable yield. Because of the long interac-
tion time between the atom and the laser beam, there is a
large saturation and the velocity classes are broadened to
about 360 MHz, when the natural width of the 6P level is
3.9 MHz.

Due to the electronic excitation of the metastable
atoms, the velocity distribution f(v) in the beam should
vary as v4 exp(−v2/2σ2), where σ is related to the mass
M of the atom and the temperature as σ =

√
kT/M [16].

In our case, we have observed that the velocity distribu-
tion can be more narrow and we have fitted the data with
a velocity distribution of the form:

f(v) ∼ vn exp(−v2/2σ2) (1)

where n is an integer which can be different from 4. With
this distribution, the second order Doppler shift δD of a
transition of frequency νtrans is, in a simple model (see
Ref. [11]):

δD = −n
2

(σ
c

)2

νtrans. (2)

In our first papers [4,5,9], we used simply the equation (2)
to determine the second order Doppler shift. In our more
recent work [6,8], the velocity distribution is directly
included in the line shape calculation of the 2S–nS/D
transitions (see Sect. 3).

If we suppose that the light intensity is uniform along
an atomic trajectory, the shape F (ν) of the Doppler
broadened 2S–6P line is:

F (ν) ∼
∫ ∞

0

f(v)H(v, ν)dv (3)

H(v, ν) = 1− exp
{
−1
v

[I+L (ν − ν0 (1 + v/c))

+ I−L (ν − ν0 (1− v/c))]} (4)
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Table 1. Velocity distribution of the hydrogen and deuterium
atomic beam.

date n σ (m/s) vMax (m/s) δ2S−8D (kHz)

hydrogen

1988 [11,16] 4 1525 (10) 3050 (20) −39.9 (1.0)

1992 [4] 5 1385 (30) 3100 (70) −41.0 (2.0)

1993 [5] 5 1406 (33) 3144 (75) −42.4 (2.0)

1996 [6] 5 1814 (13) 4056 (29) −70.6 (1.0)

1997 [8] 6 1614 (11) 3953 (27) −67.0 (1.0)

deuterium

1988 [11,16] 4 983 (10) 1966 (20) −16.6 (1.0)

1997 [6] 7 995 (10) 2633 (26) −29.7 (1.0)

1998 [8] 6 1044 (10) 2557 (24) −26.3 (1.0)

where I+ and I− are proportional to the intensity of the
two travelling waves and L (ν) is the Lorentzian profile
of the 2S–6P transition. In this equation, we have ne-
glected the fine and the hyperfine structures of the 2S
and 6P levels (the largest is the 6P fine structure ∆ν0 ∼
400 MHz). A simple model shows that this approximation
leads to, for the second order Doppler shift, a relative er-
ror of (∆ν0/∆ν)2 ' 5×10−4 (i.e. an error of about 40 Hz
for the frequencies of the 2S–nS/D transitions). The func-
tion H(v, ν) describes the two velocity classes which are
excited by the two travelling waves. Because of the sat-
uration of 2S–6P transition, the width of these velocity
classes varies as 1/

√
v. Consequently the function H(v, ν)

can be approximated by two square functions of v at the
velocities v0 = ±c (ν − ν0) /ν0, with a height of unity and
a width proportional to 1/

√
|v0|. With these approxima-

tions, the shape F (ν) becomes:

F (ν) = A (ν − ν0)n−1/2 exp
[
− (ν − ν0)2 /2σ2

ν

]
if ν > ν0 (5)

F (ν) = B (ν0 − ν)n−1/2 exp
[
− (ν − ν0)2

/2σ2
ν

]
if ν < ν0 (6)

where A and B are two adjustable constants and σν =
ν0σ/c. From the fit of the profile F (ν) to the experimental
data, we deduce the integer n and the parameter σ which
describe the velocity distribution.

The results for the measurements made since 1988 are
given in Table 1 where we also show the most probable
velocity vMax =

√
nσ and the second order Doppler shift

δ2S−8D of the 2S–8D transition (Eq. (2)). We can make two
comments: (i) during the period 1988–1993, the typical ve-
locity of the hydrogen beam was very stable, vMax being
around 3.1 km/s. By contrast, in the experiments made
since 1996, the atoms have been distinctly more rapid,
with a velocity of about 4 km/s. This velocity increase
appeared after an accidental contamination of the vac-
uum apparatus by the oil of the diffusion pump. After this

pollution, the beam velocity was less reproducible and, in
spite of our careful cleaning of the vacuum system, we have
never been able to obtain the original characteristics of the
atomic beam. This effect is probably due to the destruc-
tion of the slow atoms by the stray electric fields which
are more important in the first vacuum chamber since this
contamination. (ii) On the other hand, the ratio between
the hydrogen and deuterium velocities is very stable with
a value of 1.55. This value is slightly different from the

√
2

factor to be expected for a thermal beam. This fact can
be explained by the deviation due to the electronic excita-
tion of the 2S level. For deuterium, the mean deviation is
only 14◦ and the 20◦ angle of our atomic beam apparatus
selects the slow deuterium atoms.

2.4 Data acquisition

The experiment is driven by a microcomputer which
commands the frequency of the titanium-sapphire laser
(through the synthesizer which drives the AOM1), per-
forms the acquisition of the atomic signal and records
several other parameters of the experiment: the signal of
the photodiode which monitors the light intensity inside
the enhancement cavity, the frequency of the beat note
between the two He–Ne lasers, the modulation frequency
of the AOM2 and several other frequency measurements
used to determine the optical frequency of the laser (see
Sect. 4). The atomic spectrum is divided in 101 frequency
points. For each point, the duration of the measurement
is 1 s (the signal of the lock-in amplifier which detects
the atomic signal is acquired 10 times every 100 ms with
a time constant of 100 ms) and there is a dead time of
about 300 ms for the acquisition procedure by the com-
puter and the shift of the laser frequency. To reduce the
effect of the low drift of the metastable yield, the sweep
of the line is not regular: the 101 points are obtained by
10 scans of the line in the following order:

0 10 20 30...80 90 100
99 89 79 69...19 9
8 18 28 38...88 98
...

91 81 71 61...11 1

Finally, the laser frequency is scanned ten times across the
atomic resonance during a 22 minutes run. After an aver-
age of these 10 scans, the relative noise of the metastable
yield is about 0.3%.

Figure 6 shows a typical signal obtained in the case
of the 2S1/2(F = 1)–8D5/2 transition of hydrogen. In
this recording, the decrease of the metastable intensity
is 13% and the linewidth 1.13 MHz (in terms of atomic
frequency). By comparison with the natural width of the
8D level (572 kHz), there is a large broadening which is
mainly due to the inhomogeneous light shift experienced
by the atoms through the Gaussian profile of the laser
beams. To evaluate this effect, we record the signal for
several laser intensities and we made an extrapolation
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Table 2. Some features of the observed transitions.

transition number of runs amplitude of a scan width variation maximum amplitude

hydrogen

2S1/2(F = 1)–6D5/2 [9] 49 10 MHz 1.8 MHz to 3.4 MHz 19.7%

2S1/2(F = 1)–6S1/2 [9] 91 4 MHz 400 kHz to 1.2 MHz 5.7%

2S1/2(F = 1)–8D5/2 [5] 20 8 MHz 900 kHz to 2.1 MHz 18.6%

2S1/2(F = 1)–8D3/2 [5] 24 8 MHz 900 kHz to 1.9 MHz 16.0%

2S1/2(F = 1)–8S1/2 [5] 47 4 MHz 330 kHz to 800 kHz 5.1%

2S1/2(F = 1)–8D5/2 [6] 90 8 or 12 MHz 750 kHz to 2.0 MHz 21.7%

2S1/2(F = 1)–8D3/2 [6] 53 8 or 12 MHz 800 kHz to 1.6 MHz 18.5%

2S1/2(F = 1)–8S1/2 [6] 77 2.8 or 4 MHz 300 kHz to 950 kHz 6.7%

2S1/2(F = 1)–12D5/2 [8] 78 3.6 MHz 300 kHz to 600 kHz 8.7%

2S1/2(F = 1)–12D3/2 [8] 62 3.6 MHz 300 kHz to 600 kHz 6.7%

deuterium

2S1/2(F = 3/2)–8D5/2 [6] 41 8 or 12 MHz 750 kHz to 2.2 MHz 19.8%

2S1/2(F = 3/2)–8D3/2 [6] 49 8 or 12 MHz 700 kHz to 2.0 MHz 19.5%

2S1/2(F = 3/2)–8S1/2 [6] 47 2.8 or 4 MHz 250 kHz to 1.0 MHz 7.3%

2S1/2(F = 3/2)–12D5/2 [8] 44 3.6 MHz 300 kHz to 650 kHz 9.1%

2S1/2(F = 3/2)–12D3/2 [8] 54 3.2 MHz 350 kHz to 650 kHz 8.3%

Fig. 6. Typical two-photon transition signal, recorded as a
decrease of the metastable beam intensity. Example of the
2S1/2(F = 1)–8D5/2 transition of hydrogen: the decrease of
the metastable yield is 13%.

to zero light power. Consequently, the data acquisition
takes 3 or 4 days for each atomic transition. Table 2 gives
some details for the measurements which have been made
during the period 1993–1998 [5,6,8,9]. For each transition,
we indicate the number of the runs used for the extrap-
olation, the amplitude of the frequency scan (in terms of
atomic frequency), the range of variation of the line width
with the light power and the maximum amplitude of the
observed signal.

3 Line shape analysis

3.1 Expression for the line shape

Figure 7 shows an atomic trajectory in the laser-atom in-
teraction region (the second vacuum chamber). In this

Fig. 7. Schematic view of an atom trajectory in the laser-atom
interaction region.

region, the collisions are negligible and the atomic tra-
jectories are straight lines passing through the two di-
aphragms (the small deviation of the atomic trajectory
due to the forces induced by the light shifts will be stud-
ied below). The calculation procedure is the following. In
a first step, we calculate for each trajectory the destruc-
tion probability of the metastable atom when it crosses
the laser beam. Then we make an average over all the
possible trajectories.

3.1.1 Two-photon excitation rate

The two-photon transition probability Γg between two
states |g〉 and |e〉 (energies Eg and Ee) is given by
[11,18]:

Γg =
n2ω2

ε2
0~2

∣∣∣∣∣∑
r

〈e|d · ε |r〉 〈r|d · ε |g〉
ω − ωrg

∣∣∣∣∣
2

× Γe

(2ω − ωeg)2 + (Γe/2)2 (7)
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Γg =

�
4πa2

0

mc2α

�2X
e

|〈e |Qtp| g〉|2 Γe (1 + cioI) I2

[2ω − (ωeg (1− v2/c2) + clsI)]2 + [Γe (1 + cioI) /2]2 (1 + csatI2)
(10)

Table 3. 2S–nS/D two-photon transition amplitude 〈e |Qtp| g〉
and natural width of the excited level.

transitions 〈e |Qtp| g〉 (a.u.) Γe/2π

2S–6S −14.711 297 kHz

2S–8S −14.921 144 kHz

2S–6D −133.16 1.337 MHz

2S–8D −92.937 572 kHz

2S–12D −55.033 172 kHz

2S–15D −40.677 88.7 kHz

2S–20D −27.187 19.0 kHz

where n is the number of photons per unit volume for
each counterpropagating wave, ω the laser frequency, ε
the polarisation, ωij = (Ei −Ej) /~, d the electric dipole
moment operator and Γe the natural width of the excited
state (we suppose that the natural width of the state |g〉
is negligible). The summation is made over all the possi-
ble states |r〉 (including the continuum). We introduce the
two-photon operator Qtp. In our experiment, the polari-
sation of the laser beam is linear (because of the Brewster
windows of the vacuum apparatus placed in the enhance-
ment cavity). For a polarisation along the z-axis, Qtp is
given in atomic units (~ = αc = m = 1) by:

Qtp =
∑
r

z |r〉 〈r| z
ω − ωrg

· (8)

With this notation, equation (7) becomes:

Γg =
(

4πa2
0

mc2α

)2 |〈e |Qtp| g〉|2 ΓeI2

(2ω − ωeg)2 + (Γe/2)2 (9)

where I is the power density of the light (I = n~ω/c), a0

the Bohr radius, α the fine structure constant and m the
electron mass. For the transitions studied in this paper,
Table 3 gives the values of the matrix element 〈e |Qtp| g〉
(calculated in Ref. [11]) for an atom without electronic
and nuclear spin, and the natural width of the excited
level.

In the calculation of the line shape of the 2S–nS/D
transitions, we have taken into account the fine and hy-
perfine structures of the S and D levels, the light shift, the
second order Doppler effect, the photoionisation of the up-
per level and the saturation of the two-photon transition.
The states |g〉 and |e〉 are the magnetic hyperfine sublevels
|FgmF 〉 and |FemF 〉 (Fi is the total angular momentum
of the state |i〉, |i〉 = |g〉 or |e〉). We have the selection rule
∆mF = 0. Then the two-photon transition probability

becomes:
see equation (10) above.

The coefficients cls, cio and csat describe the light shift,
the photoionisation, and the saturation of the two-photon
transition.

Following the notations of reference [11], the light shift
coefficient is given by:

cls =
(

4πa2
0

mc2α

)
(βe − βg)

where βi are the matrix elements of the light shift operator
Qls. We have:

Qls =
∑
r

[
z |r〉 〈r| z
ωir + ω

+
z |r〉 〈r| z
ωir − ω

]
(atomic units).

(11)

The light shift operator is the sum of a scalar operator
Q0

ls and of an operator of rank 2 Q2
ls. For the state

|i〉 = |nLJFmF 〉 (n principal quantum number, L and J
orbital and electronic momenta), straightforward algebra
gives:

〈i |Qls| i〉 =
〈nL

∥∥Q0
ls

∥∥nL〉√
2L+ 1

+ (−1)F−mF
(
F 2 F
−mF 0 mF

)
〈JF

∥∥Q2
ls

∥∥JF 〉 (12)

where:

〈JF
∥∥Q2

ls

∥∥JF 〉 =

(−1)F+I+2J+L+S (2F + 1) (2J + 1)

×
{
J 2 J
F I F

}{
L 2 L

J S J

}
〈nL

∥∥Q2
ls

∥∥nL〉.
The calculation of the matrix elements 〈nL

∥∥Qkls∥∥nL〉 and
ionisation coefficient cio has been made with a method us-
ing Sturmian functions [19] (the coefficient cio can be also
obtained with the Fermi’s golden rule, see Refs. [11,20,
21]). Table 4 gives the values of these parameters. The
effect of the ionisation is not entirely negligible. For ex-
ample, for a laser beam of 100 W with a waist of 660 µm,
the ionisation rate of the 8S level is, at the center of the
beam, 1.5× 105 s−1, i.e., because of this ionisation prob-
ability, the width of the 8S level increases by 24 kHz. The
saturation coefficient csat can be obtained by using an ef-
fective Hamiltonian [22]. Its expression is:

csat = 8
(

4πa2
0

mc2α

)2 |〈e |Qtp| g〉|2

Γ 2
e

· (13)
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Table 4. Light shift and ionisation coefficients for the 2S–nS or 2S–nD transitions studied in this paper (expressed in atomic
units).

transitions 〈nLg
Q0

ls

nLg〉 (a.u.) 〈nLe
Q0

ls

nLe〉 (a.u.) 〈nLe
Q2

ls

nLe〉 (a.u.) ionisation coefficient cio (m2W−1)

2S–6S −290.96 324.42 0 1.536 × 10−9

2S–8S −355.31 291.35 0 1.144 × 10−9

2S–6D −290.96 727.20 34.99 2.315 × 10−10

2S–8D −355.31 648.51 19.19 1.805 × 10−10

2S–12D −428.53 603.94 6.78 1.517 × 10−10

Table 5. Data for the calculation of the 2S(F = 1)–8D5/2 two-photon line shape.

transition Fe hyperfine shift ahfs weight of the Fe level β2S (a.u.) βFe (a.u.)

hydrogen

2S1/2(F = 1)–8D5/2 2 −82.3 kHz 2/9 −355.31 288.19

3 59.4 kHz 7/9 −355.31 286.88

deuterium

2S1/2(F = 3/2)–8D5/2 3/2 −25.6 kHz 1/15 −355.31 290.02

5/2 −7.3 kHz 4/15 −355.31 289.16

7/2 18.3 kHz 2/3 −355.31 287.22

This effect is also not negligible: with the same laser beam
parameters as above, the value of csatI

2 is about 0.1 for
the 2S1/2–8D5/2 transition.

In the case of the 2S–nS transition, the two-photon
operator is scalar and we have the selection rules ∆F = 0,
∆mF = 0. In equation (10) the summation over the states
|e〉 is reduced to a single term and, for the two-photon
matrix element, we have 〈nLeJeFmF |Qtp |2LgJgFmF 〉 =
〈nLemL|Qtp |2LgmL〉. For the 2S–nD transition, the two-
photon operator is quadrupolar and, in equation (10), we
have to make the sum, for each mF value, on all the states
|FemF 〉. Nevertheless, as the quadrupolar term of the light
shift is very small (see Tab. 4), we have used the mean val-
ues (with respect to the magnetic quantum number mF )
of the light shift coefficient cls (given by Eq. (12)) and of
the intensities of the hyperfine components. With these
approximations, the two-photon transition probability Γg
does not depend on mF . The summation in equation (10)
is made over the Fe quantum number and the two-photon
fine and hyperfine intensities are given by:

|〈nLeJeFmF |Qtp |2LgJgFmF 〉|2 =

afsahfs |〈nLemL|Qtp |2LgmL〉|2 . (14)

The matrix elements 〈nLemL|Qtp |2LgmL〉 have been
given in Table 3. The coefficient afs takes into account
the fine structure of the D level. It is proportional to the
degeneracy 2Je + 1 (0.4 and 0.6 for the D3/2 and D5/2

levels). The coefficient ahfs describes the intensity of the

hyperfine components and is proportional to [12]:

(2Fe + 1)

{
Je Jg 2
Fg Fe I

}2

.

As an example, Table 5 gives the numerical values used
in equation (10) for the 2S(F = 1)–8D5/2 transition. The
hyperfine splittings are calculated with the Fermi’s for-
mula [20].

3.1.2 Destruction probability of the metastable atoms

We consider an atomic trajectory between two points
(r1, θ1) and (r2, θ2) on the diaphragms which delimit the
metastable beam (see Fig. 7). If the laser beam is aligned
with the x-axis, the laser intensity varies along the atomic
trajectory as:

I(x, ρ) = I0

(
w0

w(x)

)2

exp

[
−2
(

ρ

w(x)

)2
]

(15)

where x is the coordinate along the laser beam, ρ the ra-
dial distance to the laser beam axis, w(x) the radius of the
laser beam. Along the atomic trajectory, ρ is a function
ρ(x) and, if we assume that the transit time of the atom
through the laser beam is long with respect to the life time
1/Γe of the excited level, the two-photon transition prob-
ability Γg becomes a function of x. The probability that
the atom undergoes a transition during this trajectory is:

P (r1, θ1, r2, θ2) = 1− exp−
∫ L

0

Γg(x)dx
vx

(16)
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Table 6. Two-photon cascade probability Rn from the nS or nD levels to the 2S metastable state.

level 6S 6D 8S 8D 12D 15D 20D

Rn 0.0740 0.0463 0.0815 0.0513 0.0548 0.0558 0.0567

Table 7. Partition of the probability Rn between the two
hyperfine levels of the metastable state when the two-photon
excitation is made from the 2S1/2(F = 1) hyperfine sublevel
(F = 3/2 for deuterium).

upper level nS1/2 nD3/2 nD5/2

hydrogen

p0 (4/27)Rn (32/135)Rn (2/15)Rn

p1 (23/27)Rn (103/135)Rn (13/15)Rn

deuterium

p1/2 (16/81)Rn (128/405)Rn (8/45)Rn

p3/2 (65/81)Rn (277/405)Rn (37/45)Rn

where vx is the component of the atom velocity along the
x axis and L the distance between the two diaphragms.
We have to correct this expression to take into account the
hyperfine structure and the repopulation of the 2S level.

(i) Hyperfine structure of the metastable state. In our
experiment, we resolve the hyperfine structure of the
metastable state and we have studied the most intense
transitions starting from the 2S1/2(F = 1) hyperfine level
(2S1/2(F = 3/2) for deuterium). As we detect all the
metastable atoms we have to multiply the equation (16)
by a coefficient Chfs which describes the population of the
two hyperfine levels. By observing some transitions start-
ing from the 2S1/2(F = 0) hyperfine level (2S1/2(F = 1/2)
for deuterium), we have measured these populations:

Chfs(F = 1) = 80% in hydrogen,

Chfs(F = 3/2) = 67.6% in deuterium.

These values are slightly different from the statistical
weights (3/4 and 2/3 respectively). This effect is prob-
ably due to a larger quenching of the 2S1/2(F = 0)
(2S1/2(F = 1/2) in deuterium) which is closer to the 2P1/2

level and more sensitive to the stray electric fields.
(ii) Repopulation of the metastable state. When an

atom is excited to the nS or nD level, it can undergo a
radiative cascade towards the 2S1/2 level with the prob-
ability Rn = p0 + p1 (p1/2 + p3/2 for deuterium), where
the probabilities p0 and p1 (p1/2 and p3/2 for deuterium)
are correlated to the two 2S1/2(F = 0) and 2S1/2(F = 1)
levels (respectively F = 1/2 and F = 3/2 for deuterium).
These probabilities have been calculated taking into ac-
count only the two photon cascades [11]. The values rele-
vant to this paper are given in Tables 6 and 7.

Finally, after solving the rate equations which de-
scribe the evolution of the populations of the two hyper-
fine sublevels, we obtain the destruction probability of a

metastable atom at the end of its trajectory:

P ′(r1, θ1, r2, θ2) = Chfs

(
1− p0

1− p1

)
×
[

1− exp− 1
vx

∫ L

0

(1− p1)Γg(x)dx

]
. (17)

For deuterium, we have to replace in equation (17) the
probabilities p0 and p1 by p1/2 and p3/2. The first factor
describes the optical pumping from the F = 1 hyperfine
sublevel to the F = 0 one. The factor 1 − p1 in the inte-
gral describes the inefficiency of the two-photon excitation
when the atom comes back to the initial F = 1 hyperfine
sublevel.

Up to now, we have supposed that the atomic trajec-
tories were straight lines. Let us consider the effect of the
force due to the light shift of the metastable state. As the
2S state is down shifted (see Tab. 4), the atom is attracted
towards the axis of the laser beam by a force Fρ(x, ρ) (we
neglect the component of this force along the x-axis):

Fρ(x, ρ) = −~βg
(

4πa2
0

mc2α

)
∂

∂ρ
I(x, ρ).

The acceleration due to this force is considerable. For ex-
ample, for a laser beam of 100 W with a waist of 660 µm,
the maximum radial acceleration is about 350 m/s2. Nev-
ertheless, because of the small transit time of the atom
through the second vacuum chamber (typically 190 µs),
the deviation from a straight trajectory is small, about
a few micrometres. Even so, in the case of the 2S–nD
transitions, which give the most accurate results, we have
included this effect for the line shape calculation. The
atomic trajectory is calculated step by step to determine
the function ρ(x) which is used to obtain the intensity
I(x, ρ) (Eq. (15)) and the two-photon transition probabil-
ity Γg(x) (Eq. (10)).

3.1.3 Summation on the atomic trajectories and velocities

The last step of this calculation is to make a summation
of equation (17) over all velocities and all possible trajec-
tories. We have studied the velocity distribution f(v) in
Section 2 and these functions are given in Table 1. On the
other hand, we do not know the exact distribution of the
atomic trajectories. Because of the recoil of the atom in-
volved by the electronic excitation of the 2S state, there is
a large dispersion in the direction of the metastable atoms.
For this reason, we can suppose a uniform distribution for
the points (r2, θ2) at the end of the atomic beam. This is
not the case however at the beginning of the beam. The
distribution of the metastable atoms can depend on the
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spatial distribution of the 1S hydrogen atoms, the elec-
tron density or the quenching stray electric fields. Our ap-
proach has been to simulate the spatial distribution of the
points (r1, θ1) by a uniform one on a virtual diaphragm
centered on the real diaphragm at the beginning of the
beam but with a smaller radius R1. In this case the line
shape L(ω) is given by:

L(ω) =
4

πR2
1R

2
2

∫ ∞
0

f(v)dv
∫ R1

0

r1dr1
∫ R2

0

r2dr2

×
∫ π

0

dθ2P
′(r1, θ1, r2, θ2). (18)

We have supposed that we have a cylindrical symmetry
and that the laser beam is well aligned with respect to the
atomic beam. R2 is the radius of the real diaphragm at
the end of the atomic beam (R2 = 3.5 mm). As explained
below, the radius R1 is determined during the analysis of
the experimental curves to obtain a correct evaluation of
the light shift. A typical value is R1 = 2 mm.

3.1.4 Other broadening and shifting effects

In the above analysis, we have neglected several other ef-
fects which can broaden or shift the line. The Stark effect
produced by the stray electric fields, which can induce a
significant shift, will be studied subsequently. The other
effects are the following.

(i) Laser line width. The jitter of our laser is about 2 kHz
(see Sect. 2) corresponding to a line broadening of
4 kHz in terms of atomic frequency.

(ii) Finite transit time. Though the metastable atomic
beam and the laser beam are colinear, the broadening
due to the finite transit time of the atoms through the
laser beam is not entirely negligible. For an atomic
trajectory making an angle θ with the laser beam,
the line broadening is 2v sin θ

√
ln 2/πw [23]. In the

case of the largest possible angle θ (about 0.6◦), this
broadening is 32 kHz for a velocity of 4 km/s and a
waist of 660 µm.

(iii) Residual magnetic field. As the atomic beam is placed
in a magnetic shield, the residual magnetic field is
about 1 mG. For the 2S–nS transitions, the Zeeman
splittings of the 2S and nS levels are similar. Because
of the selection rules ∆F = 0, ∆mF = 0, there is no
broadening. In the case of the 2S–nD transition, the
broadening due to the Zeeman effect can be about
10 kHz, but there is no shift if the laser polarisation
is linear.

(iv) Black body radiation. The black body radiation in-
duces transitions between the different hydrogen en-
ergy levels. Consequently, there is a depopulation of
each level of the two-photon transition, i.e. a broad-
ening of the line, and a shift. These effects are studied
in detail in reference [24] for a temperature of 300 K.
In our experiment, the magnetic shield which sur-
rounds the atomic beam is heated at about 330 K.

Table 8. Broadening and shift due to the black body radiation.

transition broadening shift

2S–6S 1.2(0.1) kHz −360(90) Hz

2S–6D 1.7(0.2) kHz −430(105) Hz

2S–8S 4.4(0.4) kHz 520(130) Hz

2S–8D 5.5(0.5) kHz 650(160) Hz

2S–12D 7.1(0.7) kHz 2.1(0.5) kHz

If we assume an uncertainty of 30 K to take into ac-
count the inhomogeneity of the heating, we obtain
the broadenings and shifts given in Table 8. Using
the data of reference [24], we have supposed that the
broadening varies as the temperature T and the shift
as T 2.7.

3.2 Analysis of the data

3.2.1 Fit procedure

The aim of this analysis is to determine very precisely,
with respect to our very stable FPR cavity, the transi-
tion frequency, corrected for the light shift, the second
order Doppler effect and the nD hyperfine structure. As
the two-photon transitions are observed by measuring the
decrease of the metastable yield, we can calibrate this de-
crease with respect to the intensity of the metastable beam
when the laser is off resonance. The principle of the ad-
justement procedure is hence the following: from the am-
plitude of this decrease we deduce the optical power and,
consequently, the light shift.

In practice the theoretical curves given by equa-
tion (18) are adjusted to fit the experimental data. As
the numerical calculations of the theoretical line shape
are long (there is a quintuple integration), we calculate
a set of theoretical curves for several laser powers P
(P = πw2

0I0/2) from 5 W to 150 W with a step of 5 W,
and as a function of 301 atomic frequency points. The
frequency steps are adjusted to the line width (50 kHz
for the 2S–6D and 2S–8D transitions, 25 kHz for the 2S–
12D and 20 kHz for the 2S–6S and 2S–8S). We obtain
the curves L(ω, P ). Then we make two convolutions: a
first convolution following ω by a Gaussian curve of width
∆ω which takes into account the broadening effects which
are not included in the line shape, and a second convolu-
tion following P by an other Gaussian curve of width ∆P

which describes the fluctuations of the light power seen by
the atoms. The width ∆P is deduced, for each recording,
from the light intensity measurements obtained using the
enhancement cavity by a photodiode. Finally, the four pa-
rameters of the adjustment are the metastable yield when
the laser is off resonance, the light power P , the frequency
of the atomic transition CLP (without the light shift, the
second order Doppler effect and the hyperfine structure of
the D level) and the Gaussian broadening ∆ω. During the
adjustement, we make an interpolation, quadratically for
the power and linearly for the frequencies.
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Fig. 8. Fit of the experimental line profile with the theoretical
one. (a) 2S1/2(F = 3/2)–8D5/2 transition in deuterium. (b)
2S1/2(F = 3/2)–8S1/2(F = 3/2) transition in deuterium. The
light powers deduced from the fits are respectively 90.6(2.2) W
and 96.2(2.6) W and the decreases of the metastable yield 18%
and 6%.

Figures 8a and 8b show two examples of adjustements
in the case of the 2S1/2–8D5/2 and 2S1/2–8S1/2 transitions
of deuterium. The asymmetry of the experimental record-
ings, which appears for both transitions, but with different
signs, is well reproduced by the theoretical profiles. For
the 2S1/2–8S1/2 transition, this asymmetry is related to
the quadratic dependence with I(x, ρ) of the atomic exci-
tation rate at any point in the beam, since the light shift
is linear with I(x, ρ). Thus, the more shifted contributions
to the signal are also the more intense. In the case of the
2S1/2–8D5/2 transition, there is a very large saturation
of the two-photon excitation probability. This saturation
reduces the weight of the more shifted contributions to
the signal, so that the sign of the asymmetry is reversed.
In both cases, experimental and theoretical profiles are in
excellent agreement.

3.2.2 Extrapolation versus the light power

The most crucial point of our analysis is the determina-
tion of the optical power seen by the atoms. A first test
is to compare the fitted power P with the signal IT given
by the photodiode placed after the enhancement cavity
(see Fig. 9). There is a good agreement between these

Fig. 9. Fitted power P versus the photodiode signal IT for the
2S1/2(F = 3/2)–8D5/2 transition in deuterium (40 recordings).

Fig. 10. Extrapolation of the half maximum center (◦) and
of the line position corrected for the light-shift, second-order
Doppler effect and 8D hyperfine structure (•) versus the light
power P in the case of the 2S1/2(F = 3/2)–8D5/2 transition of
deuterium.

data which lie in a linear ratio. We use the slope of this
straight line P/IT as a parameter to control the optical
alignment of the experiment: the slope P/IT is maximised
to obtain the best matching between the laser beams and
the atomic beam. The slope P/IT is also determined
by the distribution of the atomic trajectories. For exam-
ple, if we increase the radius R1 of the first diaphragm,
the theoretical curves exhibit a smaller decrease of the
metastable yield, and, consequently, the fitting procedure
gives a larger light power P . To determine the correct
value for R1, we study the shift of the line position versus
the laser power. For each record, the adjustment proce-
dure gives us the corrected line position CLP and the
half-maximum center of the line HMC. Figure 10 shows
a typical extrapolation of the HMC and CLP data ver-
sus the light power. Because of the saturation of the two-
photon transition probability, the variation of HMC is
not exactly linear with P . The shift of the line is about
400 kHz for a power of 100 W. On the other hand, there
is no variation of the corrected line position. This result
has been obtained by varying the radius R1 to eliminate
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Table 9. Calculation of the position of the line in the case of the 2S1/2–8D3/2 transition in hydrogen. The extrapolated values
are the absolute frequencies given in terms of laser frequency (i.e. CLP/2). Here we have indicated only the last digits and the
real value is obtained by adding 385 324 GHz.

distribution of the trajectories R1 = 1.8 mm R1 = 2 mm

slope of the straight line P/IT (arb. units) 0.224 0.246

extrapolation of CLP versus P (MHz) 730.029 80 730.030 72

uncertainty (kHz) 3.27 3.23

extrapolation of CLP versus IT (MHz) 730.030 35 730.031 05

uncertainty (kHz) 3.21 3.20

mean of the extrapolation versus P and IT (MHz) 730.030 07 730.030 88

uncertainty (kHz) 3.24 3.20

slope of the straight line CLP versus P (MHz/W) 9× 10−5 −8× 10−5

final position of the line (MHz) 730.030 5(33)

(interpolated position for a slope null)

interpolated value for P/IT (arb. units) 0.236

interpolated value for R1 1.9 mm

the variations of CLP with P . In practice, to obtain the
position of the line, we use the following procedure: we
make the mean of the linear extrapolations of CLP ver-
sus P and IT for two values of R1 (for example 1.8 and
2 mm) and we interpolate these data to null the slope of
the straight line CLP (P ). The details of this method are
illustrated in Table 9 in the case of the 2S1/2–8D3/2 transi-
tion in hydrogen. For this extrapolation, we have used the
absolute frequency measurement described in Section 4
and the corrected line position CLP is not related to the
FPR cavity but is an absolute frequency.

The uncertainties given in this table are only statisti-
cal. For each recording, the adjustement procedure gives
an uncertainty for CLP which is deduced from the dis-
agreement between the experimental and the theoretical
curves. The linear extrapolation is made with a weighted
least squares method. We calculate an a priori uncertainty
σ1 given by the propagation of the uncertainties of each
record through the least squares calculations. This un-
certainty does not depend on the dispersion of the points
(CLP, P) with respect to a straight line. Next we calculate
an a posteriori uncertainty σ2 which takes into account
this dispersion and is given by:

σ2 = σ1t1σ

√
χ2

n− 2

where n is the number of recordings involved in the extrap-
olation and χ2 the weighted least squares sum. The coeffi-
cient t1σ is estimated from the Student’s t-distribution to
obtain one standard deviation (i.e. A (t1σ|n−2) = 0.683).
Finally, we choose whichever value σ1 and σ2 which is
largest.

We can test the consistency of our analysis by compar-
ing, for several transitions, the interpolated values of P/IT
and R1 which correspond to the elimination of the varia-
tion of CLP with P . For example, the data obtained dur-
ing the measurements of the 2S–8S/D transitions [6] are
given in Table 10. The dispersion of the values of P/IT ,

Table 10. Values of the slope of the straight line P versus IT
and of the radius R1 of the first diaphragm which correspond
to the best determination of the light shift.

transition R1 (mm) P/IT (arb. units)

hydrogen

2S1/2–8D5/2 1.80 0.230

2S1/2–8D3/2 1.91 0.236

2S1/2–8S1/2 1.89 0.259

2S1/2–8D5/2 2.00 0.262

deuterium

2S1/2–8D5/2 1.73 0.225

2S1/2–8D3/2 1.75 0.225

2S1/2–8S1/2 1.82 0.257

which is not negligible, is probably due to the variation of
the optical alignment of the experiment. We have also esti-
mated directly this ratio from the light power transmitted
by the enhancement cavity and the transmission of the end
mirror of this cavity. We obtain the value P = 0.259× IT
with a typical uncertainty of 5%. This result is in ac-
ceptable agreement with the values given in Table 10.
The same table also shows that the spatial distribution
of the trajectories is more concentrated for deuterium (R1

is smaller than for hydrogen). This is probably due to the
larger quenching probability of the metastable deuterium
atoms which are slower: the equipotential region where
the metastable atoms are produced is reduced.

Some examples of the line width variations with the
light power are shown in Figures 11a–11c in the case of
the 2S1/2–8S1/2, 2S1/2–8D5/2 and 2S1/2–12D5/2 transi-
tions. The widths (full width at half maximum in terms
of atomic frequency) deduced from the theoretical curves
L(ω, P ) correspond to the solid curves. We observe that
the experimental widths are larger than the theoretical
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(a)

(b)

(c)

Fig. 11. Variation of the line width (full width at the half
maximum in terms of atomic frequency) versus the light power
P . (a) 2S1/2(F = 1)–8S1/2(F = 1) transition of hydrogen. (b)
2S1/2(F = 1)–8D5/2 transition of hydrogen. (c) 2S1/2(F = 1)–
12D5/2 transition of hydrogen.

ones, especially for the 2S–nD transitions. These differ-
ences can be explained by the various effects which are
not taken into account in the theoretical line shapes: the
frequency jitter of the laser, the finite transit time, the
residual Zeeman effect (for the 2S–nD transitions), black
body radiation, the fluctuations of the light intensity seen
by the atoms or the Stark effect due to stray electric fields.

Finally, to take into account the imperfections of our
theoretical analysis, we introduce another uncertainty di-
vided in two parts. (i) An uncertainty related to the op-
tical alignment of the experiment. We have made a simu-
lation of a bad alignment between the atomic beam and

the laser beam [25] and we estimate this uncertainty to
4 kHz (in terms of atomic frequency). We consider that
these uncertainties are correlated for a given series of ex-
trapolations (for example the transitions 2S–8S/D in hy-
drogen, which are made in a relatively short time), but un-
correlated for the hydrogen and deuterium measurements
and for the transitions with different principal quantum
numbers. (ii) A theoretical uncertainty, common to all the
measurements, which takes into account the possible in-
completeness of our theoretical calculation. We have es-
timated this uncertainty from our results with different
theoretical line shapes. For example, when we modified
the theoretical calculations to include the ionisation of the
upper level, the deviation of the atomic trajectories, or to
reduce the step of the set of theoretical curves L(ω, P )
from 10 W to 5 W, the shifts of the 2S1/2–8D5/2 extrap-
olation in hydrogen were successively −640 Hz, 280 Hz
and 1.4 kHz (in terms of atomic frequency). Finally, we
have assumed that the effects neglected have the same or-
der of magnitude and adopted a value of 2 kHz for this
theoretical uncertainty.

3.3 Stark effect

3.3.1 Theoretical background

In our experiment, the stray electric fields are reduced
to a few mV/cm thanks to the Aquadag coating. Nev-
ertheless, as the matrix element of the Stark Hamilto-
nian VS = −d · E (E is the electric field) varies with
the principal quantum number as n2, this small electric
field can shift and broaden the lines, mainly for the 2S–
12D transitions. The Stark coupling between the states
|nLJFmF 〉 and |nL′J ′F ′m′F 〉 induces a quadratic Stark
effect if J 6= J ′ and a linear Stark effect if J = J ′ which
vary as n7 and n2 respectively. For instance, if we con-
sider the energy levels for n = 8 (see Figs. 12a–12b), the
quadratic Stark shift of the 8D5/2 level is due to the in-
teraction with the 8P3/2 and 8F7/2 levels when the linear
Stark effect is due to the mixing between the 8D5/2 and
8F5/2 levels. A straightforward second order calculation
gives the quadratic Stark shift. As the anisotropic part
of the quadratic Stark shift is small (7.6% and 1.8% for
the 8D5/2 and 12D5/2 levels), we have considered only the
scalar part of this shift (i.e. the mean shift for the mF sub-
levels) which does not depend on the quantum number F .
Table 11 gives the results for n = 8 and n = 12.

The linear Stark shift is more difficult to analyse. For
example, the 8D5/2 and 8F5/2 hyperfine levels are mixed
(see Fig. 12b) and these structures are smaller than the
natural widths of the 8D and 8F levels (572 kHz and
285 kHz respectively). Consequently, in the experiment,
we are not able to resolve these structures and we ob-
serve together the 8D5/2 and 8F5/2 levels. Nevertheless,
to a first approximation, the shift of the line is null. If
we assume that the effect of the electric field on the ini-
tial state g of the transition is negligible, the position ωtr
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(a)

(b)

Fig. 12. (a) Fine structure and Lamb shifts of the 8S, 8P, 8D
and 8F levels. The solid line corresponds to the levels which
are excited with a two-photon transition from the metastable
state. (b) Hyperfine structure of the 8D5/2 and 8F5/2 levels in
hydrogen.

of the transition is:

ωtr =

∑
i

|〈g|Qtp |Ψi〉|2 ωi∑
i

|〈g|Qtp |Ψi〉|2
(19)

where Qtp is the two-photon operator (Eq. (8)), Ψi the
eigenvectors with the energies ~ωi of the HamiltonianH0+
VS (H0 being the Hamiltonian without electric field, ~ωg

Table 11. Coefficients of the quadratic Stark shift for some
n = 8 and n = 12 levels.

level quadratic Stark shift (MHz V−2cm2)

8S1/2 77.69

8P3/2 −39.11

8D3/2 −36.29

8D5/2 −53.59

8F5/2 −45.28

12P3/2 −698.10

12D3/2 −684.87

12D5/2 −1029.44

12F5/2 −965.73

the zero energy). Then we can write:

ωtr =
〈g|Qtp(H0 + VS)PeQ+

tp |g〉
~ 〈g|QtpPeQ

+
tp |g〉

· (20)

We have introduced the projector on the subspace of the
excited states Pe =

∑
i |Ψi〉 〈Ψi|. Then, because of parity

conservation (Qtp and VS are respectively even and odd),
we have 〈g|QtpVSPeQ

+
tp |g〉 = 0 and the barycentre of the

line does not depend on the electric field.
In our case, which is far more complicated, there are

several limitations to the validity of this argument.

(i) Equation (19) does not take into account the strong
saturation of the two-photon transition which modi-
fies the weights of each component i.

(ii) We ignore the different natural widths of the upper
states.

(iii) The adjustement procedure gives a line position
which is not necessarily the barycentre of the line.
For these reasons, we present now a line shape calcu-
lation taking into account the linear Stark effect.

3.3.2 Line shape in presence of an electric field

The aim of this calculation is to consider simultaneously
the natural width and the Stark coupling. The initial state
g is coupled to a set of p states e (for instance the 12 sub-
levels 8D5/2(F,mF )) by the optical excitation. The states
e are mixed with the p states f (for instance the 12 sub-
levels 8F5/2(F,mF )) by the Stark Hamiltonian VS. The
evolution of the density operator ρ is:

dρ
dt

=
1
i~

[(H0 + VL + VS) , ρ] + Γρ (21)

where the operators VL and Γ describe the two-photon
excitation and the spontaneous emission. We make the
rotating wave approximation and we introduce the two-
photon Rabi frequencies Ωe:

〈e|VL |g〉 =
Ωe
2

exp(−2iωt),

Ωe =
8πa2

0 |〈e |Qtp| g〉| I
mc2α

· (22)
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If we assume thatΩe � Γe, we can neglect the populations
and coherences ρee′ , ρff ′ or ρef of the upper levels. In
the rotating frame, we replace the density operator by an
operator σ with σgg = ρgg, σeg = ρeg exp(2iωt) and σge =
ρge exp(−2iωt) and we introduce the frequency detunings
∆e = 2ω − ωe and ∆f = 2ω − ωf . In this way, we obtain
from equation (21) a set of equations:

dσgg
dt

= − i
2

∑
e

Ωe (σeg − σge) , (23)

dσeg
dt

=
(

i∆e −
Γe
2

)
σeg − i

Ωe
2
σgg

− i
~
∑
f

Vefσfg (p equations), (24)

dσfg
dt

=
(

i∆f −
Γf
2

)
σfg −

i
~
∑
e

Vfeσeg (p equations).

(25)

We have introduced the matrix elements Vfe = 〈f |VS |e〉.
Then we assume that the optical coherences σeg and σfg
follow adiabatically the population σgg , i.e. that:

dσeg
dt

= 0 and
dσfg

dt
= 0.

With these hypotheses, the equations (24, 25) become:(
i∆e −

Γe
2

)
σeg +

∑
e′,f

VefVfe′

~2 (i∆f − Γf/2)
σe′g =

i
Ωe
2
σgg (p equations). (26)

We obtain a set of p equations with p unknowns σeg. If we
introduce the column vectors [σeg ] and [Ωe/2], the set of
equations (26) becomes:

A [σeg] = i
[
Ωe
2

]
σgg

where the matrix elements of the p × p operator A are
the coefficients of the set of equations (26). With these
notations, the equation (23) becomes:

dσgg
dt

= 2 Re
[
Ωe
2

]T
A−1

[
Ωe
2

]
σgg . (27)

This equation describes the evolution of the population
σgg and, finally, the two-photon transition probability
Γg is:

Γg = −2 Re
[
Ωe
2

]T
A−1

[
Ωe
2

]
. (28)

This equation is the equivalent, in the case of the Stark
mixing, of equation (9). The two-photon probability is
proportional to I2 and we can separate the frequency and
intensity variations:

Γg = I2γg(ω)

where γg(ω) describes the line profile. Afterwards we in-
clude the light shifts, but we neglect the photoionisation
and the saturation of the two-photon transition proba-
bility. Strictly speaking, we should replace each atomic
frequency ωi (i = g, e or f) by ωi − cls(i)I, where the
light shift coefficient depends on the state i. In actual
fact, to reduce the calculation time, we assume that all
the states e and f have the same light shift coefficient cls.
This is justified for two reasons: (i) the anisotropy of the
light shift is small (see Tab. 4); (ii) the light shift coef-
ficients of the levels nP, nD and nF are all very similar.
For instance, the light shift coefficients βe of the states
8P(mL = 0), 8D(mL = 0) and 8F(mL = 0) are respec-
tively 287.78, 285.43 and 281.1 (in atomic units). With
this approximation, when we include the light shift, the
transition probability becomes:

Γg = I2γg(ω −
1
2
clsI). (29)

This equation replaces equation (10). Then we follow the
procedure described in Section 3.1 (Eqs. (16–18)). How-
ever,we have not summed over the velocity distribution in
equation (18) but used instead the mean velocity vm [11]:

1/vm = 〈1/v〉 =

∫ ∞
0

f(v)
v

dv∫ ∞
0

f(v)dv

where f(v) is the velocity distribution (Eq. (1)).
In reality, we do not know the orientation of the stray

electric fields. Consequently, we have made the line shape
calculation for an electric field either parallel or perpen-
dicular to the laser polarisation to obtain the line shapes
L‖(ω, P,E) and L⊥(ω, P,E) (E = |E|). Moreover we have
to consider the case of each hyperfine sublevel mF of the
2S1/2(F = 1) level (2S1/2(F = 3/2) for deuterium). Fi-
nally, we evaluate the mean of these different profiles:

L(ω, P,E) =
1

2F + 1

∑
mF

[
1
3
L‖,mF (ω, P,E)

+
2
3
L⊥,mF (ω, P,E)

]
.

Figure 13 shows an example of this line shape in the case
of the 2S1/2(F=3/2)–20DJ transition in deuterium for a
light power of 20 W and several electric fields (in this
calculation we have neglected the quadratic Stark effect
between the J = 3/2 and J = 5/2 levels). For an elec-
tric field of 5 mV/cm, the linear Stark structure appears
clearly and we see that the nD3/2 level is more sensitive
to an electric field than the nD5/2.

3.3.3 Corrections due to the Stark effect

As the linear Stark effect varies as n2, we can estimate
the residual electric fields from the widths of the tran-
sitions to higher nD levels. During the measurements
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Fig. 13. Stark splitting of the 2S1/2(F = 3/2)–20D3/2 and
–20D5/2 transitions for several electric fields.

of the 2S–8S/D frequencies [5,6], we have made several
recordings of the 2S1/2–15DJ transition. For the 2S–12D
measurements [8], we have also observed the 2S1/2–20DJ

lines. To determine the electric field, we adjust the profile
L(ω, P,E) to the experimental data for several values of
the electric field E. We use the procedure described in Sec-
tion 3.2, but without the Gaussian broadening (∆ω = 0).
Two examples are given in Figures 14 and 15. For the
2S1/2–15D3/2 transition (Fig. 14), the best fit is obtained
for an electric field of about 2 mV/cm. Figure 15 shows the
fit of the 2S1/2–20DJ with an electric field of 3 mV/cm. In
this case we see the structure of the theoretical curve (in
the experiment, we have in fact a distribution of the am-
plitude E), but the experimental lines are narrower than
the theoretical ones. Finally, we can estimate the resid-
ual electric field ER to be 2.5(1.0) mV/cm during the
2S–8S/D measurements [6] and 2.0(1.0) mV/cm for the
2S–12D ones [8].

The calculation of the quadratic Stark effect is
straightforward (see Tab. 11). To evaluate the corrections
due to the linear Stark effect, we have fitted all the ex-
perimental curves 2S1/2–8DJ and 2S1/2–12DJ with the
theoretical profiles L(ω, P,E) for the electric field E = 0
and E = ER (for the calculation of L(ω, P,E) we have
used R1 = 2 mm). Then, we make the difference between
the two extrapolated values of CLP (obtained for E = 0
and E = ER) to obtain the shift due to the linear Stark
effect. These corrections are given in Table 12. We can
make two comments.

(i) Contrary to the result of equation (20), the shift due
to the linear Stark effect is not zero: the nD5/2 level
is shifted up, and the nD3/2 shifted down. We have
the following explanation. Schematically, as the nD5/2

level is above the nF5/2, the mixing of the two levels
divides the two-photon line in two components, a large
component above the nD5/2 level and a small compo-
nent below the nF5/2 level. Following equation (20),
the barycentre of these two components is not shifted.
If we take into account the saturation of the two-

Fig. 14. Fit of the 2S1/2(F = 3/2)–15D3/2 two-photon tran-
sition in deuterium. The theoretical curve (solid) is calculated
with an electric field of 2 mV/cm.

Fig. 15. Fit of the experimental 2S1/2(F = 3/2)–20D3/2 and
–20D5/2 profiles in deuterium. The theoretical curve (solid) is
calculated with an electric field of 3 mV/cm. For the 2S1/2(F =
3/2)–20D3/2 transition, the experimental curve is narrower
than the theoretical one.

photon transition, the large component is reduced
more than the small component and the barycentre
should be down shifted. In fact we observe a shift of
opposite sign: the adjustment procedure does not give
the barycentre of the line, but rather makes the fit to
the main component, which is up shifted. The expla-
nation is similar for the nD3/2 level but with the signs
reversed.

(ii) The total shift is larger for the nD3/2 level than for
the nD5/2, because the quadratic and the linear Stark
shift have the same signs in the former case and op-
posite signs in the latter. This result is important for
the 2S–12D transitions: the correction and the uncer-
tainty due to the Stark effect are significant for the
2S1/2–12D3/2 transition and smaller for the 2S1/2–
12D5/2 one (see Tab. 12).
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Table 12. Corrections due to the Stark effect for the 2S–8S/D and 2S–12D transitions (the quadratic Stark corrections are
similar for hydrogen and deuterium).

transition ER (mV/cm) quadratic Stark effect (kHz) linear Stark effect (kHz) total shift (kHz)

2S1/2–8S1/2 2.5(1.0) 0.56(40) 0.56(40)

hydrogen

2S1/2–8D3/2 2.5(1.0) −0.27(19) −0.24(14) −0.51(33)

2S1/2–8D5/2 2.5(1.0) −0.36(25) 0.54(38) 0.18(13)

deuterium

2S1/2–8D3/2 2.5(1.0) −0.27(19) −0.59(43) −0.86(62)

2S1/2–8D5/2 2.5(1.0) −0.36(25) 0.38(26) 0.02(1)

hydrogen

2S1/2–12D3/2 2.0(1.0) −3.4(2.8) −2.6(2.1) −6.0(4.9)

2S1/2–12D5/2 2.0(1.0) −5.0(4.0) 2.9(2.8) −2.1(1.2)

deuterium

2S1/2–12D3/2 2.0(1.0) −3.4(2.8) −2.7(2.6) −6.1(5.4)

2S1/2–12D5/2 2.0(1.0) −5.0(4.5) 3.9(3.6) 1.1(1.0)

4 Optical frequency measurements

4.1 The rubidium frequency standard

4.1.1 Experimental arrangement and metrological properties

The cornerstone of our optical frequency measurements
is a new standard, namely a laser diode at 778 nm (i.e. a
frequency ν of 385 THz) stabilized to the 5S1/2–5D5/2 two-
photon transition of rubidium (LD/Rb laser). This stan-
dard has been described previously elsewhere [7,26,27].
The AlGaAs laser diode is used in an extended cavity con-
figuration to obtain a typical spectral width of 100 kHz.
The rubidium cell (temperature of 90 ◦C and pressure of
about 8×10−5 torr) is placed in an enhancement cavity
(30 cm long with a beam waist of 420 µm) in order to
define well the two counterpropagating Gaussian beams
and eliminate completely the first order Doppler effect.
The optical isolation between the laser and the cavity is
provided by a Faraday isolator (isolation of 60 dB) and
an acousto-optic modulator (AOM) in a double-pass con-
figuration. To control the light shift, we stabilize with the
AOM the intensity of the beam transmitted by the cav-
ity to a reference value IR. The two-photon transition is
monitored via the fluorescence at 420 nm due to the cas-
cade 5D–6P–5S. The frequency lock of this system is made
with two servo-loops. The laser frequency is modulated at
100 kHz with a peak-to-peak amplitude of 300 kHz. A first
error signal is extracted from the intensity of the trans-
mitted beam by the cavity to lock the cavity length to
the laser wavelength. We then detect the modulation of
the fluorescence signal to lock the laser frequency to the
two-photon transition of rubidium.

Three identical systems have been built, two at the
LPTF (labelled L1 and L2) and a third in Laboratoire
Kastler Brossel (labelled KB). As the two laboratories are
linked by two, 3 km long, optical fibers, we can compare
the frequencies of the three systems. To check the fre-
quency shift due to the fiber, we have used our highly

stabilized titanium-sapphire laser. After a round trip of
6 km through the fibers, we have observed a maximum fre-
quency shift of 3 Hz [28]. This shift is completely negligi-
ble for our frequency measurements. From these frequency
comparisons, we have determined precisely the light shift
of each system (−7.32 kHz for the KB system with the
intensity reference value IR). The main metrological fea-
tures of the LD/Rb laser are a frequency stability (Allan
variance) of about 4×10−13τ−1/2 per laser over 1000 s and
a day-to-day repeatability of 400 Hz.

4.1.2 Optical frequency measurement

The frequencies of the three LD/Rb lasers stabilized
on the 5S1/2(F=3)–5D5/2(F=5) two-photon transition of
85Rb were measured in 1996 at the LPTF with a frequency
chain. This frequency chain connects the LD/Rb laser at
385 THz to a standard at 29 THz, namely a CO2 laser
stabilized to an osmium tetraoxyde line (CO2/OsO4) [7].
This standard had been previously measured in 1985 with
respect to the Cs clock with an uncertainty of 70 Hz
(ν = 29 096 274 952 340 (70) Hz) [29,30]. The optical
frequencies of the three LD/Rb systems have been found
to lie very close to each other (the maximum difference
was 1.1 kHz) and the measured frequency of the system
working at LKB was, after correction for the light shift:

νKB = 385 285 142 377.82 kHz (30)

with an uncertainty of 1 kHz. This uncertainty was due
to the CO2 laser (13×70 Hz) and the day-to-day repeata-
bility of the LD/Rb standard (400 Hz).

To keep this precision, we have made several frequency
comparisons between the L1, L2 and KB systems. In 1998,
for instance, we have measured the frequency difference
νKB − νL1 and νKB − νL2 . If we suppose that there was
no drift of the frequencies νL1 or νL2 between 1996 and
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1998, we can deduce two values for the frequency of the
KB system:

νKB(L1) = 385 285 142 377.53 kHz,

νKB(L2) = 385 285 142 378.32 kHz.

These values are very close to that of the 1996 measure-
ment (Eq. (30)) so we estimate the frequency shift of the
KB system to be smaller than 500 Hz.

In 1998, the measurement of the CO2/OsO4 stan-
dard with respect to the Cs clock was remade with
an uncertainty of 20 Hz (i.e. a relative uncertainty of
7×10−13) [31]. This measurement corrects the previous
one by −88 Hz. With this correction, the frequency of the
LD/Rb standard of LKB becomes:

νKB = 385 285 142 376.68 kHz.

Finally, if we take into account the light shift, the fre-
quency νKB(IR) of the LD/Rb standard of LKB working
with the reference intensity IR is:

νKB(IR) = 385 285 142 369.4 (1.0) kHz. (31)

It is this value which has been used for the analysis of
the 2S–8S/D and 2S–12D measurements. We have kept a
conservative uncertainty of 1 kHz which takes into account
the day-to-day repeatability (400 Hz), the long term sta-
bility of the LD/Rb standard (500 Hz) and the accuracy
of the CO2/OsO4 standard (13×20 Hz).

4.2 Optical frequency measurements of the 2S–8S
and 2S–8D transitions

4.2.1 The first measurement of the 2S–8S and 2S–8D
transitions

In 1993 we carried out a first optical frequency mea-
surement of the 2S–8S and 2S–8D two-photon transi-
tions [5,32]. The principle of this measurement was the
near coincidence between the 2S–8S/D frequencies and
the frequency difference of two standard lasers, the iodine
stabilized (He–Ne/I2) and the methane stabilized (He–
Ne/CH4) helium-neon lasers (frequencies νf and νCH4 re-
spectively):

ν(2S−8S/D) = νf − νCH4 +∆1

where the residual frequency difference ∆1 is about
89 GHz. After a short description of our experimental
scheme, we present an up-to-date analysis of the data
which takes into account the recent improvements of the
line shape calculations and some optical frequency mea-
surements made subsequently with the LD/Rb standard.

Figure 16 shows the experimental set-up. We use two
titanium-sapphire lasers labelled TiS1 and TiS2 which are
frequency shifted by about ∆1. We observe the two-photon
transition in hydrogen with the first titanium-sapphire

Fig. 16. Experimental set-up for the frequency comparison
between the 2S–8S/D transitions in hydrogen and the methane
stabilized and iodine stabilized standard lasers.

laser. As the power of the He–Ne/CH4 laser is only
100 µW, we use a more powerful (about 15 mW) auxiliary
He–Ne laser at 3.39 µm, which is frequency locked to the
He–Ne/CH4 standard laser. Then the second titanium-
sapphire laser and the auxiliary He–Ne laser are mixed in
a LiIO3 crystal to generate a radiation at 633 nm. This
light is heterodyned with that of the He–Ne/I2 standard
laser. Finally, the frequency difference ∆1 between the
two titanium-sapphire lasers is measured with a Schottky
diode which is simultaneously illuminated by the two
titanium-sapphire lasers and a Gunn diode at 89 GHz.
From the frequency ∆1 and that of the beat notes at
3.39 µm and 633 nm, we deduce the optical frequency
of the TiS1 laser. The details of these frequency measure-
ments are given in references [5,15].

The He–Ne/CH4 standard laser was the laser VB-
BIPM from the Bureau International des Poids et
Mesures. Its frequency is known from previous measure-
ments with an uncertainty of 1 kHz:

νCH4 = 88 376 181 602.6 (1.0) kHz.

The He–Ne/I2 standard laser was the laser INM12 from
the Institut National de Métrologie. In 1992, the frequency
νf of INM12 laser (locked on the f hyperfine component
of the 127I2 R11-5 iodine line) was measured in the LPTF
with respect to the CO2/OsO4 standard [33]. The mea-
sured frequency was:

νf = 473 612 353 586.9(3.4) kHz. (32)

In 1993 we used these frequency values to determine the
hydrogen frequencies. Today, we can use a more reliable
value of the frequency νf of the INM12 laser. First, in
1993, promptly after the hydrogen measurements, we mea-
sured the frequency νRb(5S1/2–5D3/2) of the 5S1/2–5D3/2

two-photon transition of rubidium with the same fre-
quency chain [34]. Indeed, we have a similar coincidence:

νRb(5S1/2−5D3/2) = νf − νCH4 +∆2 (33)
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Table 13. Experimental determination of the 2S–8S/D transition frequencies from our 1993 measurements (all values in MHz).

transition 2S1/2–8S1/2 2S1/2–8D3/2 2S1/2–8D5/2

1993 analysis [5] 770 649 306.3195 770 649 460.0438 770 649 517.1844

updated analysis 770 649 306.3187 770 649 460.0467 770 649 517.1887

correction of νf 0.0070 0.0070 0.0070

2S1/2 hyperfine shift 44.3892 44.3892 44.3892

8S1/2 hyperfine shift −0.6936

ν(2S1/2–8S1/2/8DJ) 770 649 350.0213 770 649 504.4429 770 649 561.5849

8S1/2/8D3/2–8D5/2 splitting 211.5621 57.1291

ν(2S1/2–8D5/2)− 770 649 000 561.5834 (143) 561.572 (131) 561.5849 (123)

mean value 770 649 561.580 (11)

but in this case the residual frequency ∆2 is only 4 to
7 GHz. For instance, for the 5S1/2(F = 1)–5D3/2(F =
3) hyperfine component in 87Rb, we have measured
∆2 = 7 383 160.2 (2.0) kHz. Afterwards, the fine structure
5D3/2–5D5/2 in rubidium was measured at the LPTF [35].
The frequency difference between the 85Rb 5S1/2(F = 3)–
5D5/2(F = 5) (i.e. the frequency of the LD/Rb standard)
and 87Rb 5S1/2(F = 1)–5D3/2(F = 3) hyperfine compo-
nents was measured to be 41 587 229.1 (2.0) kHz. Finally,
if we take into account the frequency measurement of the
LD/Rb standard, we can deduce the frequency νRb(5S1/2–
5D3/2) and use equation (33) to obtain the frequency νf
of the He–Ne/I2 INM12 standard. The result is:

νf = 473 612 353 590.4(3.5) kHz. (34)

We have used the mean value of the three LD/Rb standard
lasers L1, L2 and KB corrected for the recent measure-
ment of the CO2/OsO4 standard [7,31] (i.e. ν(LD/Rb) =
385 285 142 377.1 (2.0) kHz). The obtained νf value is up
shifted (3.5 kHz) with respect to the 1992 measurement
(Eq. (32)). Though the uncertainties are similar, the value
given by equation (34) seems the most reliable because of
the very good reproducibility of the two-photon rubidium
lines.

In 1993, we measured the three 2S1/2–8S1/2, 2S1/2–
8D3/2 and 2S1/2–8D5/2 two-photon transitions in hydro-
gen (see Tab. 2). We have remade the analysis of the data
with the line shape calculations presented in Section 3.
The hyperfine structure of the 8D levels, the photoionisa-
tion of the excited level, the saturation of the two-photon
transition as well as the second order Doppler effect are
included in the theoretical profile. The details of this anal-
ysis are given in Table 13. We recall the results of our first
analysis made in 1993 (first row of the table). The results,
given in terms of atomic frequency, are corrected for the
second order Doppler effect and the hyperfine structure
of the D levels (we have detected an error in the refer-
ence [5]: the correction due to the second order Doppler
effect is not 40.2 kHz, but rather 42.4 kHz, as indicated in
Tab. 1). These values can be directly compared with those
of our up-to-date analysis (second row of the table). The
result is similar for the 2S1/2–8S1/2 transition, but is up-
shifted by about 3 kHz for the 2S1/2–8DJ ones. After the

Table 14. Theoretical Lamb shifts in hydrogen and deuterium.

level hydrogen (MHz) deuterium (MHz)

3S1/2 311.4040 (20) 311.8106 (20)

6S1/2 39.0860 (3) 39.1368 (3)

6D5/2 0.1660 (2) 0.1662 (2)

8S1/2 16.5008 (3) 16.5222 (3)

8D3/2 −0.0607 (2) −0.0607 (2)

8D5/2 0.0714 (2) 0.0715 (2)

12D3/2 −0.0176 (2) −0.0176 (2)

12D5/2 0.0215 (2) 0.0215 (2)

correction of the He–Ne/I2 frequency (see Eqs. (32, 34))
and of the hyperfine structure of the S levels, we obtain
the 2S1/2–8S1/2 and 2S1/2–8DJ splittings (for this anal-
ysis we neglect the Stark effect and the shift due to the
black body radiation). For the 2S1/2 hyperfine structure,
we use the value of reference [36]. We deduce the 8S1/2

hyperfine structure with a simple 1/n3 scaling law, be-
cause at this level of precision the relativistic corrections
in (Zα)2 are negligible. The three experimental values of
the 2S1/2–8S1/2 and 2S1/2–8DJ splittings can be inter-
compared using the theoretical values of the fine struc-
ture and of the Lamb shifts in the n = 8 levels. Table 14
gives the theoretical Lamb shifts useful in this paper. We
have taken into account the more precise values of the
Bethe logarithms [37] and all the recent calculations of the
high-order terms following the references [38–40]. For
the nuclear charge radii in hydrogen and deuterium, we
have used rp = 0.862 fm and rd = 2.115 fm [41,42].
This enables us to deduce three independent values for
the 2S1/2–8D5/2 splitting which are in good mutual agree-
ment (see Tab. 13). The quoted uncertainties come from
the statistics, the second-order Doppler effect (2 kHz), the
optical alignment and the theoretical line shape (4 kHz
and 2 kHz respectively, see Sect. 3.2) and the He–Ne/I2

standard laser (2×3.5 kHz, see Eq. (34)). Finally, the mean
value is:

ν(2S1/2−8D5/2) = 770 649 561.580 (11) MHz.
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Table 15. Experimental determination of the 2S–8S/D transition frequencies from the measurements made in hydrogen with
the rubidium standard. All the values are in MHz and we have subtracted a frequency ν0 of 770 649 GHz. The values in
bold-faced type are the ones used in the 1998 CODATA adjustment of the fundamental constants [44].

transition in hydrogen 2S1/2–8S1/2 2S1/2–8D3/2 2S1/2–8D5/2

result of the extrapolation −ν0 306.3175 (70) 460.0609 (66) 517.1958 (40)

stark effect −0.0006 (4) 0.0005 (3) −0.0002 (1)

black body radiation −0.0005 (1) −0.0006 (2) −0.0006 (2)

2S1/2 hyperfine shift 44.3892 44.3892 44.3892

8S1/2 hyperfine shift −0.6936

ν(2S1/2–8S1/2/8DJ)−ν0 350.0120 (86) 504.4500 (83) 561.5842 (64)

8S1/2/8D3/2–8D5/2 splitting 211.5621 57.1291

ν(2S1/2–8D5/2)−ν0 561.5741 (86) 561.5791 (83) 561.5842 (64)

mean value and χ2 770 649 561.5811 (59) χ2 = 1.69

By comparison with the published value in 1993 (ν(2S1/2–
8D5/2) = 770 649 561.567 (10) MHz [5]), there is a differ-
ence of 13 kHz due to the error in the calculation of the
second-order Doppler effect (2.2 kHz), the frequency of
the He–Ne/I2 standard laser (7 kHz), the improvements
of the theoretical line shape (2.6 kHz) and the more pre-
cise Bethe logarithms (1.2 kHz).

4.2.2 The 1996 measurement using the rubidium standard

To take advantage of the very good long term stability
of the LD/Rb standard laser, we have remade the optical
frequency measurements of the 2S–8S and 2S–8D transi-
tions in hydrogen and deuterium [6,25]. In this case, the
link between the hydrogen frequencies and the standard
laser is straightforward. We have:

ν(2S−8S/D) = ν(LD/Rb) +∆3

where the residual difference ∆3 is about 40 GHz in hydro-
gen and 144 GHz in deuterium. To measure this frequency
difference, we focus on a Schottky diode the titanium-
sapphire laser (used for the observation of the hydro-
gen lines) and the LD/Rb standard laser. The Schottky
diode is simultaneously irradiated by a microwave source
at 13 GHz for hydrogen and 48.4 GHz for deuterium. We
detect the low frequency beat note between the two opti-
cal radiations and the third harmonic of the microwave.
Typically, the signal-to-noise ratio is 35 dB with a resolu-
tion bandwidth of 300 kHz. A tracking oscillator is phase
locked to this beat note, and we count continuously this
frequency. The 13 GHz source is the 130th harmonic of a
very stable quartz oscillator at 100 MHz (we use a step
recovery diode, a YIG filter and a 35 dB amplifier). For
deuterium, this microwave source is shifted to 12.1 GHz
(on the 121th harmonic of the 100 MHz quartz). Then,
a Gunn diode at 48.4 GHz is phase locked on the fourth
harmonic of the 12.1 GHz source. The frequency of the
100 MHz quartz oscillator is continuously compared to
a high stability quartz oscillator at 10 MHz (stability of
4×10−9 during four months), which has been measured
with a hydrogen maser several times. Finally, the uncer-
tainty on the Schottky diode measurement is about 15 Hz
in hydrogen and 50 Hz in deuterium.

We have measured the three 2S1/2–8S1/2, 2S1/2–8D3/2

and 2S1/2–8D5/2 two-photon transitions in hydrogen and
deuterium (see Tab. 2). In hydrogen, the 2S1/2–8D5/2 fre-
quency was measured twice, at the beginning and at the
end of the experiment. The analysis of the results is made
in Tables 15 and 16. We use the same procedure than for
the 1993 results, but we include the corrections due to the
Stark effect and the black body radiation (see Tabs. 12
and 8). In deuterium, we have used the 2S1/2 hyperfine
structure given in reference [43]. In addition to the uncer-
tainties quoted in the Tables, the final uncertainties take
into account the second-order Doppler effect (1 kHz), the
measurement and the long term stability of the LD/Rb
standard laser (2 kHz), the optical alignment and the the-
oretical line shape (4 kHz and 2 kHz respectively, see
Sect. 3.2). The three transition frequencies in hydrogen
and deuterium, in bold-faced type in the tables, were used
in the 1998 CODATA adjustment of the fundamental con-
stants [44]. As in Table 13, we use the theoretical values of
the fine structure between the 8D5/2 level and the 8S1/2

or 8D3/2 ones to obtain three independent values of the
2S1/2–8D5/2 interval. These values are in good agreement
with each other, especially these for deuterium. The com-
parison with the results of 1993 in hydrogen (see Tab. 13)
shows an improvement of the accuracy by about a fac-
tor 2 and a perfect agreement between the mean values
of the 2S1/2–8D5/2 frequencies. The results given in the
Tables 15 and 16 are slightly different from the ones pub-
lished previously [6] (for the mean values, −3.9 kHz and
−3.2 kHz in hydrogen and deuterium). These differences
are due to the new measurement of the CO2/OsO4 laser
(−2.3 kHz), the corrections due to the Stark effect and
the black body radiation (about −0.6 kHz) and some im-
provements of the theoretical line shape. With respect to
reference [6], the uncertainties are also more conservative.

4.3 Optical frequencies measurements of the 2S–12D
transitions

In order to test the measurements of the 2S–8S and 2S–8D
transitions, we have built a new frequency chain to
measure the frequencies of the 2S–12D intervals [8,45].
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Table 16. Experimental determination of the 2S–8S/D transition frequencies from the measurements made in deuterium with
the rubidium standard. All the values are in MHz and we have subtracted a frequency ν0 of 770 859 GHz. The values in
bold-faced type are the ones used in the 1998 CODATA adjustment of the fundamental constants [44].

transition in deuterium 2S1/2–8S1/2 2S1/2–8D3/2 2S1/2–8D5/2

result of the extrapolation −ν0 27.8184 (47) 182.0600 (38) 239.2086 (32)

stark effect −0.0006 (4) 0.0009 (6) ' 0

black body radiation −0.0005 (1) −0.0006 (2) −0.0006 (2)

2S1/2 hyperfine shift 13.6415 13.6415 13.6415

8S1/2 hyperfine shift −0.2131

ν(2S1/2–8S1/2/8DJ)−ν0 41.2457 (69) 195.7018 (63) 252.8495 (59)

8S1/2/8D3/2–8D5/2 splitting 211.6027 57.1448

ν(2S1/2–8D5/2)−ν0 252.8484 (69) 252.8466 (63) 252.8495 (59)

mean value and χ2 770 859 252.8483 (55) χ2 = 0.34

Fig. 17. Outline of the frequency chain between the 2S–
12D hydrogen frequencies and the LD/Rb and CO2/OsO4

standards. The details are explained in the text (Ti-Sa:
titanium sapphire laser, LD/Rb: rubidium stabilized laser
diode, LD(int): intermediate laser diode, CO2/OsO4: osmium
tetraoxyde stabilized CO2 laser, SHG: second harmonic gener-
ation, SFG: sum frequency generation).

This transition yields complementary information, be-
cause the 12D levels are very sensitive to the stray electric
fields (the quadratic Stark shift varies as n7, see Sect. 3.3),
and so such a measurement provides a stringent test of
Stark corrections to the Rydberg levels.

4.3.1 The experimental scheme

The frequency difference between the 2S–12D transitions
(λ ≈ 750 nm, ν ≈ 399.5 THz) and the LD/Rb standard
laser is about 14.2 THz, i.e. the half of the frequency of the
CO2/OsO4 standard. To bisect this frequency we use an
optical divider [2,46]. The frequency chain (see Fig. 17)
is split between the LPTF and the LKB: the two opti-
cal fibers are used to transfer the CO2/OsO4 standard

Fig. 18. Example of the position of the laser frequencies with
respect to the FPR and FPE cavities during the measurements
of the 2S–12D transitions. The fringe 1 580 868 of the FPR cav-
ity is locked on the d line of the He–Ne/I2 standard laser. The
first titanium sapphire laser (Ti-Sa1) is locked on the fringe
1 333 810 of the FPR cavity with an offset of 2×214.5 MHz.
The 809 nm laser diode, the second titanium sapphire laser (Ti-
Sa2) and the auxiliary He–Ne laser are respectively locked on
the fringes 1 237 821, 1 333 305 and 1 580 281. The laser diode
at 750 nm is frequency shifted by ν(CO2) + δ with respect to
the one at 809 nm.

from the LPTF to the LKB, where we observe the hydro-
gen transitions. This chain includes an auxiliary source at
809 nm (ν ≈ 370.5 THz) such that the laser frequencies
satisfy the equations:

ν(2S−12D) + ν(809) = 2ν(LD/Rb),
ν(2S−12D)− ν(809) = ν(CO2).

The first equation is realized at the LKB while the second
one is carried out at the LPTF. For this experiment we
use two-titanium-sapphire lasers. Figure 18 shows an ex-
ample of the positions of the laser frequencies with respect
to the FPR and FPE cavities in the case of the 2S1/2–
12D5/2 transition in hydrogen. We observe the hydrogen
transitions with a first titanium-sapphire laser (TiS1). It
is locked on the fringe 1 333 810 of the FPR cavity with a
frequency shift due to the AOM1 (see Fig. 2). The source
at 809 nm (a laser diode in an extended cavity config-
uration with a power of about 30 mW) and the second
titanium-sapphire laser (TiS2) are frequency modulated
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Table 17. Experimental determination of the 2S–12D transition frequencies in hydrogen. All the values are in MHz and we have
subtracted a frequency ν0 of 799 191 GHz. The values in bold-faced type are the ones used in the 1998 CODATA adjustment of
the fundamental constants [44].

transition in hydrogen 2S1/2–12D3/2 2S1/2–12D5/2

result of the extrapolation −ν0 666.0796 (62) 683.0145 (47)

stark effect 0.0060 (49) 0.0021 (12)

black body radiation −0.0021 (5) −0.0021 (5)

2S1/2 hyperfine shift 44.3892 44.3892

ν(2S1/2–12DJ)−ν0 710.4727 (93) 727.4037 (70)

12D3/2–12D5/2 splitting 16.9272

ν(2S1/2–12D5/2)−ν0 727.3999 (93) 727.4037 (70)

mean value (χ2 = 0.26) 799 191 727.4028 (67)

and locked on the fringes 1 237 821 and 1 333 305 of the
FPE cavity. A laser diode (power of 50 mW) is injected by
the LD/Rb standard and frequency doubled in a LiB3O5

crystal (LBO) placed in a ring cavity. This cavity is simi-
lar to the one described in reference [13]. We obtain about
10 µW in the UV. At the same time, the TiS2 laser (about
300 mW) and the source at 809 nm are summed in an
other LBO crystal to obtain a second UV beam. A track-
ing oscillator is phase locked on the beat note between the
two UV beams (frequency δ1). A part of the 809 nm source
is sent via one fiber to the LPTF. There, a 809 nm local
laser diode is phase locked to the one at LKB. A frequency
sum of this 809 nm laser diode and of an intermediate CO2

laser in an AgGaS2 crystal produces a wave at 750 nm.
This wave is used to phase lock, with a frequency shift δ,
a laser diode at 750 nm which is sent back to the LKB
by the second optical fiber. This 750 nm laser diode is
frequency shifted by ν(CO2) + δ with respect to the one
at 809 nm. Then we use a second tracking oscillator to
count the beat note (frequency δ2) between the 750 nm
laser diode and the TiS2 laser. Finally, we measure the fre-
quency δ3 between the two titanium-sapphire lasers. For
the hydrogen measurements, the CO2 auxiliary laser uses
the P(8) line (CO2 R(4) line for deuterium) and the fre-
quency δ3 is about 2.4 GHz (41.3 GHz in deuterium). The
frequency δ3 is mixed with two times the frequency which
drives the AOM1, in order to eliminate the variation of the
measured frequency when we scan the TiS1 frequency to
observe the hydrogen lines. The 2.4 GHz frequency beat
notes is detected with a fast photodiode. For deuterium,
we measure the 41.3 GHz frequency with a Schottky diode.
As for the hydrogen measurements of the 2S–8S/D tran-
sitions (see Sect. 4.2.2), the Schottky diode is irradiated
with the two titanium-sapphire lasers and a microwave
source at 13.9 GHz and we detect the beat note between
the TiS1 and TiS2 lasers and the third harmonic of this
microwave radiation (for this measurement we use also a
tracking oscillator). Then, from the frequencies δ1, δ2 and
δ3, we can deduce the frequency ν(TiS1) of the TiS1 laser.
Specifically, we have:

ν(TiS1) = ν(LD/Rb) +
1
2

(ν(CO2) + δ + δ1 + δ2) + δ3.

The advantage of this scheme is that all the frequency
counting is performed at the LKB.

4.3.2 Results and uncertainties

We have measured the two 2S1/2(F=1 or 3/2)–12D3/2 and
2S1/2(F=1 or 3/2)–12D5/2 two-photon transitions in hy-
drogen and deuterium. We have not studied the 2S1/2–
12S1/2 transition because of the low signal-to-noise ratio.
For each transition, the signal is recorded for about 50
light powers (see Table 2). The extrapolated frequencies
and the analysis of the data are shown in Tables 17 and 18.

For these transitions, the corrections due to the black
body radiation and to the Stark effect are not negligi-
ble (several kHz), especially the Stark correction of the
2S1/2–12D3/2 (6 kHz). In Tables 17 and 18, these transi-
tion frequencies are corrected for the hyperfine structure
and compared by taking into account the theoretical value
of the fine structure 12D3/2–12D5/2. We obtain two inde-
pendent values of the 2S1/2–12D5/2 interval which are in
good agreement for hydrogen and deuterium. As for the
2S–8S/D results, the final uncertainty takes into account
the second order Doppler effect (1 kHz), the accuracy of
the LD/Rb standard (2 kHz) and the uncertainties due
to the alignment and the theoretical line shape (4 kHz
and 2 kHz). Ultimately, these measurements are slightly
less precise than those for the 2S–8S/D transitions, owing
to the smaller signal-to-noise ratio and the larger Stark
shifts.

5 Comparison of the 1S–3S and 2S–6S/D
transitions

In this experiment our purpose is the determination of
the 1S Lamb shift. This Lamb shift is difficult to measure,
because the 1S level is isolated. Up to this experiment,
all the measurements of the 1S Lamb shift have been ob-
tained from the study of the 1S–2S two-photon transition
by subtracting the 1S–2S Dirac and recoil energies from
the experimental value of the 1S–2S interval [47,48]. In the
most recent experiments [49,50], this subtraction is made
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Table 18. Experimental determination of the 2S–12D transition frequencies in deuterium. All the values are in MHz and we
have subtracted a frequency ν0 of 799 409 GHz. The values in bold-faced type are the ones used in the 1998 CODATA adjustment
of the fundamental constants [44].

transition in deuterium 2S1/2–12D3/2 2S1/2–12D5/2

result of the extrapolation −ν0 154.3925 (44) 171.3263 (45)

stark effect 0.0061 (54) 0.0011 (10)

black body radiation −0.0021 (5) −0.0021 (5)

2S1/2 hyperfine shift 13.6415 13.6415

ν(2S1/2–12DJ )−ν0 168.0380 (86) 184.9668 (68)

12D3/2–12D5/2 splitting 16.9318

ν(2S1/2–12D5/2)−ν0 184.9698 (86) 184.9668 (68)

mean value (χ2 = 0.28) 799 409 184.9676 (65)

Fig. 19. Experimental setup for the frequency comparison be-
tween the 1S–3S and 2S–6S/D transitions (TiSa: titanium sap-
phire laser, LBO: lithium tri-borate crystal, BBO: β-barium
borate crystal).

in a simple way by comparison of the 1S–2S frequency
with four times the 2S–4S, 2S–4P or 2S–4D frequencies.
Indeed, in the Bohr model, these frequencies lie exactly in
a ratio 4:1, and the deviation from this factor is mainly
due to the Lamb shifts which vary as 1/n3. The principle
of our measurement is similar, except that we compare
the 1S–3S and 2S–6S/D frequencies, which, for the same
reason, are also in a ratio 4:1. This experiment has been
described briefly elsewhere [9]. Here we provide some ad-
ditional details and an updated analysis of the results.

5.1 The 1S–3S transition

Figure 19 shows the general scheme of the experiment.
The same titanium-sapphire laser is used to observe, al-
ternately, the 2S–6S or 2S–6D transitions at 820 nm and
the 1S–3S transition at 205 nm. The 2S–6S/D appara-
tus is the one described in Section 2. The UV radiation
at 205 nm is obtained from two successive doubling stages
with a LBO crystal and a β-barium borate crystal (BBO).
Both steps have been described elsewhere [13,51]. Each

crystal is placed in an enhancement ring cavity. The first
frequency doubling produces up to 500 mW at 410 nm
for a pump power of 2.3 W at 820 nm. The second har-
monic generation at 205 nm is far more challenging. To
avoid rapid degradation of the faces of the BBO crystal,
the second enhancement cavity is placed inside a clean
chamber filled with oxygen. Moreover, the length of this
enhancement cavity is modulated (modulation frequency
of 15 kHz) so as to be resonant only some of the time. We
work in an intermediate regime in which the UV intensity
consists of 3 µs pulses at a frequency of 30 kHz. This
method prevents the generation, in the ring cavity, of a
counterpropagating wave at 410 nm, probably due to a
photorefractive effect in the BBO crystal. This modula-
tion produces a frequency shift, the UV frequency being
upshifted (downshifted) by about 120 kHz when the length
of the BBO cavity decreases (increases). In this regime, a
UV power of about 1 mW (peak power) can be obtained
for several hours using the same point of the crystal.

To observe the 1S–3S transition, we use a second
atomic beam. Atomic hydrogen is produced by a radiofre-
quency discharge similar to the one described in Sec-
tion 2.3.1. The discharge is off-axis with respect to the
atomic beam, and linked to the vacuum chamber by a 9 cm
length of Teflon tube. The atomic hydrogen flows through
a Teflon nozzle (3 cm long, 3 mm in diameter) into the
vacuum chamber which is evacuated by an oil diffusion
pump (Alcatel 6250). Under running conditions, the pres-
sures in the discharge tube and the vacuum chamber are
0.4 mbar and 9×10−5 mbar respectively. With the method
described in reference [52], we have measured the angular
width of the profile of the effusive atomic beam to be about
8◦ (full width at the half maximum). By comparison with
a previous version of the experiment where the discharge
was on the axis of the atomic beam (there was only the
Teflon nozzle), we have also found that the atomic flux
is reduced by about a factor 4. This effect shows that the
recombination of the hydrogen atoms in the Teflon tube is
significant. The atomic beam is carefully delimited by two
diaphragms (diameter of 2 mm and 3 mm successively) to
eliminate the stray light coming from the hydrogen dis-
charge. The atomic beam is also placed inside a linear
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Fig. 20. Spectrum of the 1S1/2(F = 1)–3S1/2(F = 1) transi-
tion detected by Balmer-α fluorescence. The total acquisition
time is about 14 hours. The signal is fitted with a Lorentzian
curve (solid).

buildup cavity formed by two spherical mirrors (radius of
curvature 25 cm). The UV beam emerging from the BBO
crystal is corrected for astigmatism with a spherical lens
(focal length 87 mm) and a cylindrical lens (focal length
290 mm) and mode matched into the cavity with two more
lenses. Inside the cavity, the UV power is typically 10 mW
and the UV beam is focused at a distance of 12 cm from
the Teflon nozzle with a waist of about 48 µm. At this
distance, we estimate the density of hydrogen atoms to
be about 3×1010 atoms/cm3. The two cavity mirrors are
mounted on PZT stacks and the length of the cavity is
locked to the UV frequency so that successive UV pulses
have the same intensity inside the cavity. In these con-
ditions, the frequency shifts of two successive UV pulses
cancel each other and the residual frequency shift is esti-
mated to be less than 3 kHz. The two-photon transition is
detected by monitoring the Balmer-α fluorescence due to
the radiative decay 3S–2P. This fluorescence is collected
with a spherical mirror and a f/0.5 aspheric lens system,
selected with an interference filter and detected with a
cooled photomultiplier (EMI 9658R).

The data acquisition is similar to the one described in
Section 2.4. Each scan is divided in 31 frequency points.
For each point, the photomultiplier signal is counted dur-
ing 1 s and we make 10 scans of the line to achieve a
7 minute run. As the signal-to-noise ratio is small, we
take the mean of several runs to obtain an observable
signal. Figure 20 shows the mean of 102 runs. The to-
tal background is about 160 counts/s and the 1S–3S sig-
nal 10 counts/s. In Figure 20, the signal is fitted with a
Lorentzian curve. The observed line width (1.7 MHz in
terms of atomic frequency) is mainly due to the natural
width of the 3S level (1 MHz), transit time broadening
(200 kHz) and broadening due to the modulation of the
UV light (about 500 kHz). We can compare the signal am-
plitude with a theoretical estimate. The two-photon tran-
sition probability Γg is given by equation (9). As the value
of the matrix element 〈3S |Qtp| 1S〉 of the two-photon oper-
ator is 2.14 in atomic units [53], we obtain for a UV power
of 10 mW: Γg = 2× 10−2 s−1. If we take into account the

Fig. 21. Hydrogen two-photon spectra. (a) 1S1/2(F = 1)–
3S1/2(F = 1) transition. (b) 2S1/2(F = 1)–6D5/2 transition.
The two signals are shifted by about 2.37 GHz in terms of
laser frequency at 820 nm.

effective linewidth (1.7 MHz), the atomic density in front
of the photomultiplier (3×1010 atoms/cm3), the observa-
tion length (12 mm because of the transmission of the in-
terference filter), the detection solid angle (Ω/4π = 0.24),
the transmission of the detection optics (about 66%), the
photomultiplier quantum efficiency (8%), the population
of the F = 1 hyperfine level (3/4) and the modulation of
the UV light (reduction of the excitation time by a factor
0.066), we estimate the signal to be about 20 counts/s.
This value is in fair agreement with the experiment if we
consider the uncertainties in the UV power and the atomic
density.

5.2 Comparison of the 1S–3S and 2S–6S/D
frequencies

We have compared the 1S1/2–3S1/2 frequencies with those
of the 2S1/2–6D5/2 and 2S1/2–6S1/2 transitions. To do
this, we have measured alternately the 1S–3S and 2S–
6S/D line positions with respect to the fringes 1 219 477
(transition 1S1/2–3S1/2) and 1 219 485 (transition 2S1/2–
6D5/2) or 1 219 484 (transition 2S1/2–6S1/2) of our very
stable FPR cavity. For the first comparison, we collected
the data for the 2S1/2–6D5/2 transition (1 day), the 1S1/2–
3S1/2 (3 days), then 2S1/2–6D5/2 once again (2 days). The
procedure was similar for the 2S1/2–6S1/2 transition, but,
because of its lower intensity, longer acquisition times were
required (4, 3 and 4 days respectively). Figure 21 shows,
on the same frequency scale, the recordings of the 1S1/2–
3S1/2 and 2S1/2–6D5/2 lines. As the 2S–6S/D linewidth is
larger than the 1S–3S one, the accuracy is mainly limited
by the uncertainty in the 2S–6S/D line positions.

The results are given in Table 19. For the 2S–6S/D
transitions, we have used our updated analysis of the
data: the second-order Doppler effect and the 6D hyper-
fine structure are included in the theoretical line shape.
The quoted uncertainties of the second row of the table
(8.8 kHz and 20 kHz for each measurement) are mainly
due to the uncertainties in the positions of the 1S–3S line
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Table 19. Comparison between the 1S1/2–3S1/2 and 2S1/2–6D5/2/6S1/2 frequencies. All the values are in MHz. The values in
bold-faced type are the ones used in the 1998 CODATA adjustment of the fundamental constants [44].

comparison with 2S1/2–6D5/2 2S1/2–6S1/2

laser frequency splitting 2370.1140 (44) 2120.188 (10)

laser frequency splitting ×2 4740.2280 (88) 4240.377 (20)

1S–3S second-order Doppler effect −0.0310 (25) −0.0310 (25)

hyperfine structure corrections −41.0981 −42.7421

ν(2S–6S/D)− ν(1S–3S)/4 4699.099 (11) 4197.604 (21)

6S1/2–6D5/2 splitting 501.5051

ν(2S1/2–6D5/2)− ν(1S–3S)/4 4699.099 (11) 4699.109 (21)

mean value 4699.1006 (98)

(4.7 kHz and 6 kHz for each measurement) and of the
2S–6D or 2S–6S lines (7.1 kHz and 19 kHz). For the 1S
atomic beam, the velocity distribution is that of a thermal
beam, i.e. f(v) ∼ v3 exp

(
−v2/2σ2

)
and the second-order

Doppler shift of the 1S–3S line is −3/2(σ/c)2ν1S−3S (see
Eq. (2)). The analysis of the features of the metastable
atomic beam shows that the heating due to the discharge
is typically 30 K. As the two discharges of the two atomic
beams are of identical design, we can assume that the
temperature of the beam is in the range 280–330 K and
we obtain a second-order Doppler shift of −124(10) kHz
for the 1S–3S transition in terms of atomic frequency, i.e.
−31.0(2.5) kHz for the comparison with the 2S–6S/D fre-
quencies. Because of the 1S and 3S hyperfine structures,
there is a quadratic Zeeman effect of the F = 1,mF = 0
sublevels. For the 1S–3S line this effect introduces a mean
shift of 11.9 kHz/G2 (in terms of atomic frequency). In our
experiment, the Earth’s magnetic field is about 260 mG
and the Zeeman shift of the 1S–3S transition 800 Hz. We
have neglected this effect and several other small effects:
the shifts due to the black body radiation (see Tab. 8), the
residual Stark shifts (smaller than 300 Hz for the 2S–6S/D
transition) and the light shift of the 1S–3S transition. For
this transition, the light shift coefficients βi (see Eq. (11))
are −6.445 and 20.926 (atomic units) for the 1S and 3S
level respectively [19]. With a UV power of 10 mW, the
light shift is about 740 Hz for an atom at the center of the
laser beam. As previously, the final uncertainties (11 kHz
and 21 kHz for the two measurements, see Tab. 19) take
into account the uncertainty of the second-order Doppler
effect of the 2S–6S/D lines (2 kHz), and the uncertainties
due to the alignment and the theoretical line shape (4 kHz
and 2 kHz).

Finally, if we use the theoretical value of the 6S1/2–
6D5/2 splitting, we can compare the two measurements.
We obtain two independent values of the frequency dif-
ference ν(2S1/2−6D5/2) − ν(1S−3S)/4 which are in fair
agreement. By comparison with the results published
previously [9], these values are shifted by 6 kHz and
−3.7 kHz for the 2S1/2–6D5/2 and 2S1/2–6S1/2 measure-
ments because of the new theoretical line shape. Finally
we obtain an uncertainty of 9.8 kHz for the difference
ν(2S1/2−6D5/2)− ν(1S−3S)/4.

6 Determination of the Rydberg constant
and Lamb shifts

6.1 Method and analysis of the data

6.1.1 Theoretical background

The aim of this section is to extract from our measure-
ments the values of Rydberg constant and Lamb shifts.
More details of the theory of atomic hydrogen can be
found in the review articles [38–40]. The hydrogen level
energy is conventionally expressed as the sum of three
terms: the energy given by the Dirac equation for a parti-
cle with the reduced mass, the first relativistic correction
due to the recoil of the proton, and the Lamb shift. The
energy EH(nLJ) of the level |nLJ〉 of hydrogen is:

EH(nLJ) = dH(nLJ)hcR∞ + rH(n)hcR∞ + hLH(nLJ)
(35)

where dH(nLJ)hcR∞ and rH(nLJ)hcR∞ describe the
Dirac and recoil energies. The coefficients dH(nLJ) and
rH(n) can be expressed exactly as a function of the fine
structure constant α and the electron to proton mass ratio
me/mp. Moreover, the coefficient rH(n) does not depend
on the quantum numbers L and J [20]. The Lamb shift
LH(nLJ) is expressed in terms of frequency. It contains
all the theoretical corrections, i.e. the QED corrections,
the other relativistic corrections due to the proton recoil
and the effect of the proton charge distribution. For deu-
terium, the energy ED(nLJ) is given by a similar equation
with the subscripts D. Equation (35) shows that, to ex-
tract the Rydberg constant from our measurements, we
need to know the Lamb shifts. For the upper levels of the
transitions, we can use the theoretical values of the Lamb
shift (see Tab. 14), because the theoretical uncertainties
(only a few hundred hertz) are far smaller than those of
our measurements (typically 6 kHz). On the other hand,
for the 1S and 2S levels, this is not the case. The one-
loop QED corrections are now calculated with an accu-
racy of 1 Hz [54]. By contrast, for the calculations of the
higher order terms, the QED uncertainties are typically
5 kHz and 40 kHz for the 2S and 1S levels [55–57]. More-
over, the disagreement between the two determinations
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of the charge radius of the proton (rp = 0.805(11) fm [58]
and rp = 0.862(12) fm [41]) corresponds to a difference of
18 kHz and 149 kHz respectively for the 2S and 1S Lamb
shifts. Consequently, in our data analysis, we shall con-
sider that the 1S and 2S Lamb shifts are unknowns to be
determined by the experiment. Nevertheless, since several
terms of the Lamb shift calculations vary with the prin-
cipal quantum number exactly as 1/n3 (for instance the
effect of the charge distribution of the nucleus), the devi-
ation from this scaling law as been calculated precisely by
Karshenboim [59]. For the 1S and 2S levels of hydrogen
and deuterium the results are:

LH(1S1/2)− 8LH(2S1/2) = −187.232(5) MHz (36)

LD(1S1/2)− 8LD(2S1/2) = −187.225(5) MHz (37)

as one might expect, there are similar equations for the
other nS1/2 levels.

6.1.2 Experimental data

To determine the Rydberg constant and the Lamb shifts,
we use the mean values of the frequencies νA(2S1/2–nD5/2)
(A = H or D and n = 8 or 12) and of the frequency
difference νH(2S1/2−6D5/2) − νH(1S1/2−3S1/2)/4 which
are given at the end of the Tables 15–19. We have in-
troduced the subscripts H and D to distinguish the hy-
drogen and deuterium cases. If we define the coefficient
aA(2S1/2−nD5/2) = dA(nD5/2)+rA(nD5/2)−dA(2S1/2)−
rA(2S1/2) we deduce from our experimental results five
equations:

νA(2S1/2−nD5/2) = aA(2S1/2−nD5/2)cR∞
+ LA(nD5/2)− LA(2S1/2) (4 equations). (38)

And we obtain from the 1S–3S and 2S–6S/D comparison:

νH(2S1/2−6D5/2)− 1
4
νH(1S1/2−3S1/2) =[

aH(2S1/2−6D5/2)− 1
4
aH(1S1/2−3S1/2)

]
cR∞

+ LH(6D5/2)− LH(2S1/2)− 1
4
(
LH(3S1/2)− LH(1S1/2)

)
.

(39)

We will use also several other precise measurements in hy-
drogen and deuterium, at first the measurements of the 2S
Lamb shift in hydrogen. This Lamb shift (in fact the differ-
ence between the 2S1/2 and 2P1/2 Lamb shifts) is deduced
from radiofrequency measurements of the 2P1/2–2S1/2

splitting, the first by Lamb and Retherford [60]. The most
precise direct determination of this splitting is the one
by Lundeen and Pipkin (1 057.845(9) MHz [61]). We have
also used two other indirect determinations deduced from
the 2S1/2–2P3/2 splitting (1 057.842(12) MHz [62,63]) and
obtained by the anisotropy method (1 057.852(15) MHz

[64]). From the weighted mean value of these three re-
sults (1 057.8454(65) MHz) and the theoretical value of
the 2P1/2 Lamb shift (−12.83599(8) MHz [63]) we deduce
the 2S1/2 Lamb shift:

LH(2S1/2) = 1 045.009 4(65) MHz. (40)

We have not taken into account the determination of
Pal’chikov et al. (1 057.8514(19) MHz [65]) who measured
in fact the ratio between the 2S1/2 Lamb shift and the
natural width of the 2P1/2 level. Since there is an ongo-
ing discussion about the theoretical value of this natural
width [66,67], we have not used this result.

The frequency and the isotope shift of the 1S–2S tran-
sition have been measured very accurately by Hänsch and
coworkers [2,3]. Their results provide us with equations:

νH(1S1/2−2S1/2) = aH(1S1/2−2S1/2)cR∞
+ LH(2S1/2)− LH(1S1/2), (41)

νD(1S1/2−2S1/2)− νH(1S1/2−2S1/2) =[
aD(1S1/2−2S1/2)− aH(1S1/2−2S1/2)

]
cR∞

+ LD(2S1/2)− LH(2S1/2)− LD(1S1/2) + LH(1S1/2).
(42)

Lastly, we will use also the measurements of the 1S1/2

Lamb shift made by comparison of the 1S–2S frequency
with the 2S–4S/D frequencies [42,49] or with the 2S–4P
frequencies [50]. If we use the theoretical values of the
Lamb shifts for the n = 4 levels, the analysis of these data
gives two experimental values of the linear combination of
the Lamb shifts:

LH(1S1/2)− 5LH(2S1/2) = 2 947.831(37) MHz

(1S−2S and 2S−4S/D comparison), (43)

LH(1S1/2)− 5LH(2S1/2) = 2 947.787(34) MHz

(1S−2S and 2S−4P comparison). (44)

These two measurements are in fair agreement with each
other.

To conclude, we obtain a set of 12 equations where the
5 unknowns are the Rydberg constant and the Lamb shifts
of the 1S and 2S levels in hydrogen and deuterium: 2 theo-
retical equations (36, 37), 5 equations given by our exper-
imental results (38, 39) and 5 equations which resume the
accurate measurements made in hydrogen or deuterium by
several other groups (40–44). This set of equations give us
the possibility, with least squares procedures, to extract
the Rydberg constant and the Lamb shifts by different
ways. We present several approaches below. For these cal-
culations, we use the value of the fine structure constant
given by the last adjustment of the fundamental constants
α−1 = 137.035 999 76(50) [44]. This choice is justified be-
cause, in this adjustment, the hydrogen measurements
have no significant influence on the determination of the
fine structure constant. For the proton-to-electron and
deuteron-to-proton mass ratios, we use the values taken
from references [68,69]: mp/me = 1 836.152 666 5(40) and
md/mp = 1.999 007 501 3(14).
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Table 20. Determination of the Rydberg constant.

method and transitions involved equations (R∞ − 109 737) cm−1

determination of R∞ from the 2S–nD and 2S–2P measurements

2S–2P and 2S–8S/D in hydrogen (38, 40) 0.315 6861(13)

2S–2P and 2S–12D in hydrogen (38, 40) 0.315 6848(13)

2S–2P, 2S–8S/D and 2S–12D in hydrogen (38, 40) 0.315 6855(11)

determination of R∞ from linear combination of optical frequencies measurements

2S–8S/D, 1S–2S and 1/n3 law in hydrogen (36, 38, 41) 0.315 6865(16)

2S–12D, 1S–2S and 1/n3 law in hydrogen (36, 38, 41) 0.315 6842(17)

2S–8S/D, 2S–12D, 1S–2S and 1/n3 law in hydrogen (36, 38, 41) 0.315 6854(13)

2S–8S/D, 2S–12D, 1S–2S and 1/n3 law in deuterium (37, 38, 41, 42) 0.315 6854(12)

2S–8S/D, 2S–12D, 1S–2S and 1/n3 law in hydrogen and deuterium (36–38, 41, 42) 0.315 6854(10)

general least squares adjustment in hydrogen and deuterium

2S–2P, 2S–8S/D, 2S–12D, 1S–2S and 1/n3 law (36–44) 0.315 685 50(84)

6.2 Rydberg constant

We can extract the Rydberg constant from only our results
by considering the 8D5/2–12D5/2 splitting, which is ob-
tained by difference between our 2S1/2–8D5/2 and 2S1/2–
12D5/2 measurements. Nevertheless, since this splitting
is small (about 30 THz), the relative accuracy of this
method is only 2 × 10−10. A first precise method is to
use the experimental determination of the 2S1/2 Lamb
shift in hydrogen (Eq. (40)). The first part of Table 20
gives the values of the Rydberg constant deduced from
our 2S1/2–8D5/2 and 2S1/2–12D5/2 measurements in hy-
drogen. These two values have a similar precision and are
in an acceptable agreement (they differ by about 1 stan-
dard deviation). This agreement shows that the correc-
tions due to the Stark effect are well analyzed (these cor-
rections are about 10 times larger for the 12D than for
the 8D levels, see Tab. 12). Table 20 gives the average
of these results (R∞ = 109 737.315685 5(11) cm−1). The
relative uncertainty (about 10−11) comes from the optical
frequency measurements (6.1 × 10−12), the 2S1/2 Lamb
shift (8.3 × 10−12) and the proton-to-electron mass ratio
(1.2 × 10−12). The uncertainty due to the fine structure
constant is negligible (1.3×10−13). This result is the most
precise if we make no theoretical assumptions concern-
ing the 1S1/2 and the 2S1/2 Lamb shifts. Unfortunately,
this method is not appropriate for deuterium, because, for
this isotope, no comparably accurate determination of the
2S1/2 Lamb shift has been performed.

If we use the 1/n3 scaling law for the Lamb shifts
(Eqs. (36, 37)), we can form the linear combination of
the 1S1/2–2S1/2 and 2S1/2–nD5/2 frequencies:

7νH(2S1/2−nD5/2)− νH(1S1/2−2S1/2).

In this way, we can eliminate from the equations (38,
41) the Lamb shift combination LH(1S1/2) − 8LH(2S1/2)
(Eq. (36)) and we deduce the Rydberg constant with-
out the microwave measurements of the 2S1/2 Lamb shift.
Moreover, this method is applicable to both hydrogen and

deuterium. The results are given in the second part of Ta-
ble 20. The values obtained for hydrogen and deuterium
are in perfect agreement. If we use all the precise opti-
cal frequency measurements in hydrogen and deuterium
(transitions 1S1/2–2S1/2, 2S1/2–8D5/2 and 2S1/2–12D5/2),
we obtain a value of R∞ more precise than the previous
ones (R∞ = 109 737.315685 4(10) cm−1). This value is
also in perfect agreement with the one deduced via the
measurements of the 2S1/2 Lamb shift.

To make an average of these different determinations
of R∞, we have performed a least squares adjustement
which takes into account all the precise measurements de-
scribed by the equations (36–44): the measurements of the
2S1/2 Lamb shift, the optical frequency measurements of
the 1S–2S and 2S–nD transitions in hydrogen and deu-
terium, and also the measurements of the 1S Lamb shift
which will be described in Section 6.3. This result (R∞ =
109 737.315685 50(84) cm−1) is similar to the one of the
1998 adjustment of the fundamental constant [44], with a
relative uncertainty of 7.7 × 10−12. By comparison with
the 1986 adjustment [70], the uncertainty is reduced by a
factor of about 150. Figure 22 compares the recent deter-
minations of the Rydberg constant and shows the different
steps of this improvement since 1986.

The values of Table 20 are slightly different from the
ones published previously [8], because for the fine struc-
ture constant α we had used the value of the 1986 CO-
DATA adjustment, which differs from the new value by
about 7.5 × 10−8 [70]. To obtain these results, we have
chosen to leave out our first determination of the 2S1/2–
8D5/2 frequency (see Tab. 13), because this measurement
has no significant bearing upon the final result: if we in-
cluded this value, the uncertainty in R∞ would be reduced
to only 83× 10−8 cm−1.

6.3 Lamb shifts

We can deduce the 1S1/2 Lamb shift from the com-
parison of the 1S1/2–3S1/2 and 2S1/2–6D5/2 frequencies
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Table 21. Determination of the 1S1/2 Lamb shift in hydrogen.

method and transitions involved equations LH(1S1/2) (MHz)

comparison of transition frequencies lying in a ratio 4:1

2S–2P, 1S–3S and 2S–6S/D (39, 40) 8 172.825(47)

2S–2P, 1S–2S and 2S–4S/D (43, 40) 8 172.878(51)

2S–2P, 1S–2S and 2S–4P (44, 40) 8 172.834(48)

comparison of the 1S–2S and 2S–nD frequencies using the 2S1/2 Lamb shift

2S–2P, 1S–2S and 2S–8S/D (38, 40, 41) 8 172.854(33)

2S–2P, 1S–2S and 2S–12D (38, 40, 41) 8 172.825(34)

2S–2P, 1S–2S, 2S–8S/D and 2S–12D (38, 40, 41) 8 172.840(31)

comparison of the 1S–2S and 2S–nD frequencies using the 1/n3 scaling law

2S–8S/D, 2S–12D, 1S–2S and 1/n3 law in hydrogen (36, 38, 41) 8 172.837(32)

2S–8S/D, 2S–12D, 1S–2S and 1/n3 law in hydrogen and deuterium (36–38, 41, 42) 8 172.837(26)

general least squares adjustment in hydrogen and deuterium

2S–2P, 2S–8S/D, 2S–12D, 1S–2S and 1/n3 law (36–44) 8 172.840(22)

theory rp = 0.862(12) fm [56] 8 172.731(40)

theory rp = 0.805(11) fm [56] 8 172.582(40)

Fig. 22. Comparison of various determinations of the Rydberg
constant since the 1986 adjustment of the fundamental con-
stants; Codata 1986 [70], a [71], b [72], c [73], d [74], e [48],
f [75], g [76], h: reference [75] corrected for the new measure-
ment of the He–Ne/I2 standard laser [33], i [4], j [5], k [42],
l [6], Codata 1998 [44].

(see Eq. (39)). The value of the term [aH(2S1/2−6D5/2)−
aH(1S1/2−3S1/2)/4]cR∞ is 3 778.5887 MHz. If we use the
theoretical values of the 2S1/2 and 6D5/2 Lamb shift, we
obtain the linear combination of the 1S1/2 and 2S1/2 Lamb

shifts:

LH(1S1/2)− 4LH(2S1/2) = 3 992.787(39) MHz. (45)

Finally, thanks to the experimental value of the 2S1/2

Lamb shift (Eq. (40)) we deduce the value LH(1S1/2) =
8 172.825(47) MHz. This value differs from the one pub-
lished previously by 27 kHz. This is due to a different
value of the 2S1/2 Lamb shift (10 kHz) and to our new
theoretical line shape (17 kHz). This result is compared
in the first part of Table 21 with the determinations ob-
tained by comparison of the 1S–2S and 2S–4S/D or 2S–4P
frequencies (Eqs. (43, 44); with respect to references [42,
50], these two values are updated by taking into account
the different values of the 2S1/2 Lamb shift and of the
fine structure constant). The three results have a similar
precision and are in good agreement.

Another way to obtain the 1S1/2 Lamb shift is to use
the precise optical frequency measurements of the 1S1/2–
2S1/2 and 2S1/2–nD5/2 transitions. A first method uses
the experimental value of the 2S1/2 Lamb shift (Eq. (40))
to extract R∞ from the 2S1/2–nD5/2 splitting (see the
first part of Tab. 20). Then the 1S1/2 Lamb shift is de-
duced from the 1S1/2–2S1/2 frequency. The results are
given in the second part of Table 21. The final result
(LH(1S1/2) = 8 172.840(31) MHz) is more precise than the
precedent ones because of the very high accuracy of the
optical frequency measurements. The 31 kHz uncertainty
is due to the optical frequency measurements (15 kHz)
and, mainly, to the measurement of the 2S1/2 Lamb shift
(27 kHz). In a second method, we can avoid this limi-
tation by using the 1/n3 scaling law of the Lamb shift.
The values obtained by this way are slightly more precise
(see the third part of Tab. 21). Moreover, this method
provides the 2S1/2 Lamb shift and is reliable in the case
of deuterium. Finally, we give the result of the general
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Table 22. Determination of the 1S1/2 Lamb shift in deuterium.

method and transitions involved equations LD(1S1/2) (MHz)

comparison of transition frequencies lying in a ratio 4:1

1S–2S, 2S–4S/D and theoretical value of LD(2S1/2) [42] 8 183.807(78)

comparison of the 1S–2S and 2S–nD frequencies using the 1/n3 scaling law

2S–8S/D, 2S–12D, 1S–2S and 1/n3 law in deuterium (37, 38, 41, 42) 8 183.968(31)

2S–8S/D, 2S–12D, 1S–2S and 1/n3 law in hydrogen and deuterium (36–38, 41, 42) 8 183.967(26)

general least squares adjustment in hydrogen and deuterium

2S–2P, 2S–8S/D, 2S–12D, 1S–2S and 1/n3 law (36–44) 8 183.970(22)

Table 23. Determination of the 2S1/2 Lamb shift in hydrogen.

method and transitions involved equations νH(2S1/2−2P1/2) (MHz)

direct measurement of the 2S1/2–2P1/2 splitting

2S1/2–2P1/2, Newton et al. [77] 1 057.862(20)

2S1/2–2P1/2, Lundeen et al. [61] 1 057.845(9)

2S1/2–2P3/2, Hagley et al. [62,63] 1 057.842(12)

2S–2P, Wijngaarden et al. [64] 1 057.852(15)

comparison of transition frequencies lying in a ratio 4:1

1S–3S, 2S–6S/D and 1/n3 scaling law (36, 39) 1 057.841(10)

1S–2S, 2S–4S/D and 1/n3 scaling law (36, 43) 1 057.857(12)

1S–2S, 2S–4P and 1/n3 scaling law (36, 44) 1 057.842(11)

comparison of the 1S–2S and 2S–nD frequencies using the 1/n3 scaling law

2S–8S/D, 2S–12D, 1S–2S and 1/n3 law in hydrogen (36, 38, 41) 1 057.8446(42)

2S–8S/D, 2S–12D, 1S–2S and 1/n3 law in hydrogen and deuterium (36–38, 41, 42) 1 057.8447(34)

general least squares adjustment in hydrogen and deuterium

2S–2P, 2S–8S/D, 2S–12D, 1S–2S and 1/n3 law (36–44) 1 057.8450(29)

theory rp = 0.862(12) fm [56] 1 057.836(6)

theory rp = 0.805(11) fm [56] 1 057.812(6)

adjustment (LH(1S1/2) = 8 172.840(22) MHz) with a rel-
ative uncertainty of 2.7× 10−6.

Table 22 gives the results for the 1S1/2 Lamb shift
in deuterium. First, we recall the value of reference [42]
which was obtained by comparison of the 1S–2S and 2S–
4S/D frequencies, but which used the theoretical value of
the 2S1/2 Lamb shift. Afterwards, we give the results of
the comparison of the 1S–2S and 2S–nD frequencies and
we conclude with the general least square adjustment in
hydrogen and deuterium. This last value (LD(1S1/2) =
8 183.970(22) MHz) has the same uncertainty as that for
hydrogen.

Several values of the 2S1/2 Lamb shift in hydrogen
and deuterium are given in Tables 23 and 24. The first
part of these tables displays the determinations deduced
from the 2S–2P splitting by microwave spectroscopy or
by level crossing or anisotropy methods [61,62,64,77,78].
For hydrogen, the combination of the equations (43, 44,
45) with the 1/n3 scaling law of the Lamb shift (Eq. (36))
yields three determinations of the 2S1/2 Lamb shift (sec-
ond part of Tab. 23) with a precision equivalent to that

of the direct measurements. For deuterium, a first value
of the 2S1/2 Lamb shift is deduced from the isotope shift
of the 2S1/2–8D5/2 and 2S1/2–12D5/2 transitions. These
isotope shifts are mainly a mass effect. Thanks to the pre-
cise determination of the mass ratios mp/me and md/mp,
the uncertainty in the mass effect is only 0.5 kHz. Then,
from these isotope shifts, we deduce the difference be-
tween the 2S1/2 Lamb shift in deuterium and hydrogen.
By using the experimental value of the 2S1/2 Lamb shift
in hydrogen, we obtain finally the 2S1/2 Lamb shift in
deuterium (second part of Tab. 24). To obtain the 2S1/2–
2P1/2 splitting, we use the theoretical value of the 2P1/2

Lamb shift (LD(2P1/2) = −12.8350(3) MHz). These re-
sults are in very good agreement with the first measure-
ment of Cosens [78].

Next we give the values deduced from the 1S–2S and
2S–nD optical frequency measurements. These results for
the 2S1/2 Lamb shift (LH(2S1/2) = 1 057.8447(34) MHz
and LD(2S1/2) = 1 059.2338(34) MHz) are independent
and more precise than the direct determinations
made by microwave spectroscopy. Lastly, we make
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Table 24. Determination of the 2S1/2 Lamb shift in deuterium.

method and transitions involved equations νD(2S1/2−2P1/2) (MHz)

direct measurement of the 2S1/2–2P1/2 splitting

2S1/2–2P1/2, Cosens [78] 1 059.240(33)

determination from the 2S1/2–nD5/2 isotope shift

2S–2P in H and 2S–8S/D in H and D (38, 40) 1 059.234(10)

2S–2P in H and 2S–12D in H and D (38, 40) 1 059.235(11)

2S–2P in H, 2S–8S/D and 2S–12D in H and D (38, 40) 1 059.234(8)

comparison of the 1S–2S and 2S–nD frequencies using the 1/n3 scaling law

2S–8S/D, 2S–12D, 1S–2S and 1/n3 law in deuterium (37, 38, 41, 42) 1 059.234(4)

2S–8S/D, 2S–12D, 1S–2S and 1/n3 law in hydrogen and deuterium (36–38, 41, 42) 1 059.2338(34)

general least squares adjustment in hydrogen and deuterium

2S–2P, 2S–8S/D, 2S–12D, 1S–2S and 1/n3 law (36–44) 1 059.2341(29)

an average of all these determinations: the results
(LH(2S1/2) = 1 057.8450(29) MHz and LD(2S1/2) =
1 059.2341(29) MHz), with an uncertainty of 2.9 kHz, are
the most precise to date.

For hydrogen, we compare the values of the 1S1/2 and
2S1/2 Lamb shift with theory [56] (see Tabs. 21 and 23).
There is a large discrepancy, which varies from 2.4 to 5.6
standard deviations according to which value of the proton
charge radius one adopts (rp = 0.862(12) fm [41] or rp =
0.805(11) fm [58]). This discrepancy is perhaps due to the
calculation of the two-loop corrections [57]. Conversely, if
we believe the calculations of the reference [56], we can
deduce the radius of the proton charge distribution rp =
0.901(16) fm.

6.4 Proton-to-electron mass ratio

In a first approximation, the isotope shift of an optical
transition is proportional to (me/mp)(1 − mp/md)cR∞.
Since the deuteron-to-proton mass ratio is known with a
high accuracy (relative uncertainty of 7×10−10), we could
deduce the proton-to-electron mass ratio from the value
of the isotope shift. In actual fact, this method is not re-
liable, because the corrections due to the charge distribu-
tion of the proton and deuteron are not well known. To
avoid this difficulty, we consider the isotope shift ∆H−D

on the linear frequency combination 7ν(2S1/2−nD5/2) −
ν(1S1/2−2S1/2), where the Lamb shifts are eliminated us-
ing equations (36, 37). From the measurements of the
1S1/2–2S1/2, 2S1/2–8D5/2 and 2S1/2–12D5/2 frequencies,
we deduce the values:

∆H−D(n = 8) = 796 844.536(50) MHz

∆H−D(n = 12) = 851 208.619(59) MHz

where the uncertainties are mainly due to the measure-
ments of the 2S1/2–nD5/2 frequencies.

To sum up, we can obtain two independent values
of the proton-to-electron mass ratio which are given

Table 25. Determination of the proton-to-electron mass ratio.

mp/me relative
uncertainty

van Dyck et al. [79] 1 836.152 701(37) 2× 10−8

Garreau et al. [12] 1 836.152 59(24) 1.3× 10−7

Gabrielse et al. [80] 1 836.152 680(88) 4.8× 10−8

Farnham et al. [68] 1 836.152 6665(40) 2.2× 10−9

this work

∆H−D(n = 8) 1 836.152 668(115) 6.3× 10−8

∆H−D(n = 12) 1 836.152 666(128) 7× 10−8

weighted mean 1 836.152 667(85) 4.6× 10−8

in Table 25. The weighted mean value is mp/me =
1 836.152667(85) with a relative uncertainty of 4.6×10−8.
This value is in perfect agreement with the far more pre-
cise determination of Farnham et al. [68], and also with
other previous measurements [12,79,80] (see Tab. 25).

7 Conclusion

Thanks to a detailed analysis of the lineshapes of the 2S–
nS/D transitions, we have obtained more reliable values
of the 1S1/2 Lamb shift and of the 2S1/2–nS1/2, –nDJ fre-
quencies. These results have been analyzed with a least
squares procedure, by taking into account several precise
measurements from other groups. If we do not use the 1/n3

scaling law for the Lamb shift, the relative uncertainties in
the Rydberg constant and the 1S1/2 Lamb shift are 10−11

and 3.8× 10−6 respectively. In this case, the accuracy is
limited mainly by the uncertainty in the 2S1/2 Lamb shift.
To avoid this problem, we make theoretical assumptions
concerning the Lamb shift. By using the 1/n3 scaling law
between the 1S1/2 and 2S1/2 Lamb shifts, the very precise
optical frequency measurements reduce the uncertainties
to 9.1×10−12 and 3.2×10−6 for R∞ and the Lamb shifts.
By this means, we obtain a value of the 2S1/2 Lamb shift
which is about 2.6 times more precise than the direct mi-
crowave measurement. Moreover, the same method can
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be applied to deuterium. Finally, we average these differ-
ent results to reduce the uncertainties in R∞ and in the
Lamb shifts to 7.7 × 10−12 and 2.7 × 10−6. The preci-
sion is now limited by the uncertainties in the 2S–nS/D
frequencies, which, in our experiment, are mainly due to
the light shifts. To obtain more accurate values of these
frequencies, a first possibility is to use ultracold hydro-
gen to increase the interaction time and decrease the light
shifts [81]. In our group, we intend to measure the op-
tical frequency of the 1S–3S transition. In this case, as
the number of atoms in the 1S atomic beam is about 108

times larger than in the metastable atomic beam, we can
observe the transition with a very small light power and,
consequently, with negligible light shifts. For this exper-
iment, we plan to compensate the second-order Doppler
effect using a magnetic field perpendicular to the atomic
beam [82]. As a last word, we note that a new determina-
tion of the proton radius rp is highly desirable. The future
measurement of rp, being prepared at the Paul Scherrer
Institute by spectroscopy of muonic hydrogen, should pro-
vide the opportunity to test even further the theoretical
calculations of the Lamb shift [83].
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B. Couillaud, T.W. Hänsch, Phys. Rev. A 39, 4591 (1989).
75. F. Biraben, J.C. Garreau, L. Julien, M. Allegrini, Phys.

Rev. Lett. 62, 621 (1989).
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